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1 Statistical Word Alignment Implemented by Graphical Model

Using an architecture of our statistical word alignment, this paper presents 1) how meaning repre-
sentations is structured in our system which intends to be easily interpreted by a computer and still
express rich / complex / conflicting knowledge, and 2) how we jointly infer semantics from several
fragmental evidences of semantics (modalities).

As a testbed of statistical word aligner, we implemented theprototype of statistical word aligner
by graphical models [2, 10]. The advantage of using graphical method resides in its extensibility
compared to the traditional approach for statistical word alignment [3, 22, 14]. Although there
are semi-supervised word aligner [6], we only talk about unsupervised word aligner [3, 22, 14].
The capabilities of this word aligner include that 1) it supports IBM / HMM models as well as
tree-based Models [13], 2) it can extend easily to support MAP assignment-based decoder (Viterbi
decoding [21] as well as posterior decoding [10]) in these models [16, 15], 3) it can be used for the
input in the lattice-based decoding [1, 4] which are reinterpreted as the partial model selection, 4) it
supports flexible on / off capability of random variables which has advantageous in the lemma-based
alignment [5] and the morpheme avoided alignment, and 4) it can be used for the forced alignment
[18]. This comes from the fact that the inference algorithms, such as sum-product and max-product
algorithms, are not affected by the form of network structures. Note that the traditional statistical
word alignment is built purely counting the frequency of words where syntax / semantics are not
considered [11].

Let use denote English word,f denote French word, anda denote alignment function [3, 8]. Letai
denote the alignment function mapped from thei-th word inf into some word ine, fT denote the
(dependency) tree structured input inf , andeT denote the (dependency) tree structured input ine.
e, f are random variables anda is hidden variable.

1. (Independent model) EM-based word alignment is the basisof other variations.

maxEp(f, a|e) =
1

Z

l∑

a1=0

. . .

l∑

am=0

m∏

j=1

p(fj |eaj
) s.t.

∑

f

p(f |e) = 1 (1)

2. (Chain model) HMM-based word alignment considers the first-order Markov dependency
[22].
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3. (Tree model) Tree-based word alignment consider the dependency structures in the source
and the target language [13].
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It is noted that the above formulation omits the descriptionof MAP inference approach [10, 12]. In
MAP inference, the random variablese, f are further partitioned into E (evidence) / Q (query) / H
(hidden /nuisance), that iseE , eQ, fE , andfQ.

2 Meaning Representation

Instead of searching structured patterns from the beginning, we take the order of searching similar as
the frequent graph mining [20]: first we search the frequent subgraphs, and then we combine them
to find structured patterns. The feasibility of this approach in word alignment is that the subgraph
objects that we listed in below, such as Multi Word Expressions (MWEs), pronoun, the coordinated
Noun Phrases (NPs), semantic role, and so on, are reasonablyeasily detectable by current NLP
technologies. Based on the detected subgraph objects, we write semantic action based on the type
of subgraph objects. We explicitly write semantic actions when such subgraph objects appear.

Firstly, our mechanical interface of semantics /syntax / information structure is limited in the ‘prior’
in the MAP inference: we showed three types of word alignmentmodels in the previous section. We
use the prior which indicates the alignment links betweene andf in sentencei [16].

Secondly, we define the meaning representation which supports the existence of alignment links with
quantifying by probabilities: 1) alignment linksx1, · · · , xm are (equally or with some probabilities)
possible, 2) alignment linksx1, · · · , xm is prohibited (or less likely), and 3) alignment linkx is
likely.

Thirdly, each of such semantic action will lead to the suggested word alignment links (whether it is
1-to-1, many-to-1, or many-to-many). Current version supports the following semantic actions: 1)
MWEs invokes MWE-TM unit, 2) pronoun (and no subject) invokes referent-table unit, 3) IS-adverb
invokes independent-IS-table unit, 4) the coordinated NPsinvoke the coordination unit, 5) semantic
role invokes the SR-table unit, 6) proper noun / transliteration / localization term / equation invokes
the less-frequent-pair unit, 7) lexical semantics invokesthe lexical-pair unit, 8) noise invokes the
noise unit (noise is important for Japanese / Chinese), and so forth. Each of these is reasonably
detected by current NLP technologies although this dependson the availability of such tools or
corpora on the specific language. In our experiments, MWE detection is unsupervised learning,
while POS-tagging, SRL, named-entity recognition are supervised learning. Note that currently the
SR-table unit is only invokes semantic action when the semantic role in two languages are identical,
and the noise unit simply mutates itself with its semantic action.

3 Inference

Each of these semantic action is converted into the suggested alignment links. Then, we combine
such suggested alignment links by noisy-or to form the prior, which is supplied as prior knowledge
to the MAP-based word aligner. Hence, the MAP inference follows the MAP assignment version of
(1), (2) and (3) for given priors.

Note that the incorrect detection of subgraph object will lead to the incorrect invocation of the
semantic action. Note also that despite that the alignment link should be natively binary value, we
often set the prior not with binary value (0 or 1) but with probability.

4 Experiments

We evaluate the performance by BLEU [17] using EN-JP corpus [7] of 200k sentence pairs. We use
the above word aligner, SRILM [19], and Moses [9]. Firstly, when we apply only a small amount
of prior knowledge about alignment links, the effect of thisis considerably small. However, once
this surpasses some threshold, the effect becomes radically big. In this sense, one interest of ours
is what is a threshold and how much (prior) knowledge we need to supply in order to achieve such
threshold. In a sentence, when 50-60% of alignment links is apriori detected, the result reaches
precision of 97%.
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