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Abstract

A neural probabilistic language model (NPLM) provides an idea to achieve the
better perplexity than n-gram language model and their smoothed language mod-
els. This paper investigates application area in bilingual NLP, specifically Sta-
tistical Machine Translation (SMT). We focus on the perspectives that NPLM
has potential to open the possibility to complement potentially huge monolin-
gual resources into the resource-constraint bilingual resources. We introduce an
ngram-HMM language model as NPLM using the non-parametric Bayesian con-
struction. In order to facilitate the application to various tasks, we propose the
joint space model of ngram-HMM language model. We show an experiment of
system combination in the area of SMT. One discovery was that our treatment
of noise improved the results 0.20 BLEU points if NPLM is trained in relatively
small corpus, in our case 500,000 sentence pairs, which is often the case due to
the long training time of NPLM.

1 Introduction

A neural probabilistic language model (NPLM) [3, 4] and the distributed representations [25] pro-
vide an idea to achieve the better perplexity than n-gram language model [47] and their smoothed
language models [26, 9, 48]. Recently, the latter one, i.e. smoothed language model, has had a
lot of developments in the line of nonparametric Bayesian methods such as hierarchical Pitman-Yor
language model (HPYLM) [48] and Sequence Memoizer (SM) [51, 20], including an application to
SMT [36, 37, 38]. A NPLM considers the representation of data in order to make the probability
distribution of word sequences more compact where we focus on the similar semantical and syntac-
tical roles of words. For example, when we have two sentences The cat is walking in the bedroom
and A dog was running in a room, these sentences can be more compactly stored than the n-gram
language model if we focus on the similarity between (the, a), (bedroom, room), (is, was), and
(run- ning, walking). Thus, a NPLM provides the semantical and syntactical roles of words as a
language model. A NPLM of [3] implemented this using the multi-layer neural network and yielded
2035There are several successful applications of NPLM [41, 11, 42, 10, 12, 14, 43]. First, one
category of applications include POS tagging, NER tagging, and parsing [12, 7]. This category uses
the features provided by a NPLM in the limited window size. It is often the case that there is no such
long range effects that the decision cannot be made beyond the limited windows which requires to
look carefully the elements in a long distance. Second, the other category of applications include
Semantic Role Labeling (SRL) task [12, 14]. This category uses the features within a sentence. A
typical element is the predicate in a SRL task which requires the information which sometimes in a
long distance but within a sentence. Both of these approaches do not require to obtain the best tag
sequence, but these tags are independent. Third, the final category includes MERT process [42] and
possibly many others where most of them remain undeveloped. The objective of this learning



in this category is not to search the best tag for a word bubé&se sequence for a sentence. Hence,
we need to apply the sequential learning approach. Althoogsét of the applications described in
[11,[10[/12] 14] are monolingual tasks, the application &f #pproach to a bilingual task introduces
really astonishing aspects, which we can call “creativeds®j50], automatically into the traditional
resource constrained SMT components. For example, thertgacorpus of word aligner is often
strictly restricted to the given parallel corpus. HoweweiNPLM allows this training with huge
monolingual corpus. Although most of this line has not beemdested mostly due to the problem
of computational complexity of training NPLM, [43] appli¢kis to MERT process which reranks
the n-best lists using NPLM. This paper aims at differenk tastask of system combinationi [1,
29,149, 15/ 18, 35]. This category of tasks employs the sd@lenethod such as Maximum A
Posteriori (MAP) inference (Viterbi decoding) [27,]44) 28] Conditional Random Fields (CRFs) /
Markov Random Fields (MRFs).

Although this paper discusses an ngram-HMM language mokiehwve introduce as one model of
NPLM where we borrow many of the mechanism from infinite HMM] &nd hierarchical Pitman-
Yor LM [48], one main contribution would be to show one new liggtion area of NPLM in SMT.
Although several applications of NPLM have been preserttede have been no application to the
task of system combination as far as we know.

The remainder of this paper is organized as follows. SeQidescribes ngram-HMM language
model while Section 3 introduces a joint space model of ngiriiviM language model. In Section
4, our intrinsic experimental results are presented, wihil8ection 5 our extrinsic experimental
results are presented. We conclude in Section 5.

2 Ngram-HMM Language Model

Generative model Figure[1 depicted an example of ngram-HMM language modgel,4-gram-
HMM language model in this case, in blue (in the center). Wasaer a Hidden Markov
Model (HMM) [40,[21,(2] of sizeK which emits n-gram word sequenas, . .., w;_x+1 Where
hi, ..., hi_gy1 denote corresponding hidden states. The arcs figm to w;, - - -, w;—1 t0 w;
show the back-off relations appeared in language model $rimap such as Kneser-Ney smoothing
[26], Good-Turing smoothing [24], and hierarchical Pitméor LM smoothing [48].

Figure 1: Figure shows a graphical representation of theatigiMM language model.

In the left side in Figur€]ll, we place one Dirichlet ProcessrgdP(«, H), with concentration pa-
rametera. and base measuté, for the transition probabilities going out from each hidds#ate.

This construction is borrowed from the infinite HMMI[2,119].h@ observation likelihood for the
hidden wordh; are parameterized asin |h; ~ F(¢y,) since the hidden variables of HMM is lim-
ited in its representation power whefg, denotes output parameters. This is since the observations
can be regarded as being generated from a dynamic mixturelfi®] as in[(1), the Dirichlet priors



on the rows have a shared parameter.

K
plwilhia =k) = > p(hilhicr = k)p(wi|hi)
him1
K
= > monp(wilén,) 1
hi=1

In the right side in Figurgl1, we place Pitman-Yor prior PY igthhas advantage in its power-law
behavior as our target is NLP, as in (2):

wi|w1:i71 ~ PY(dz‘, 91', Gi) (2)

whereq is a concentration parametérjs a strength parameter, agt} is a base measure. This
construction is borrowed from hierarchical Pitman-Yordaage mode|[[48].

Inference  We compute the expected value of the posterior distribudfdhe hidden variables with

a beam search[19]. This blocked Gibbs sampler alternatplsarhe parameters (transition matrix,
output parameters), the state sequence, hyper-parapatershe parameters related to language
model smoothing. As is mentioned in_[19], this sampler haaratteristic in that it adaptively
truncates the state space and run dynamic programming[@s in (

p(hilwie,uie) = plwelhe) Z p(he—1|wig—1,u1:-1) ()

hi—qiug<mPt—1:ht)

whereu, is only valid if this is smaller than the transition probéls of the hidden word sequence
hi,...,hk. Note that we use an auxiliary variahlewhich samples for each word in the sequence
from the distributiornu; ~ Uniform(0, 7(%i-1.2)), The implementation of the beam sampler con-
sists of preprocessing the transition matriand sorting its elements in descending order.

Initialization  First, we obtain the parameters for hierarchical Pitmanprocess-based language
model [48] 23], which can be obtained using a block Gibbs sagf82].

Second, in order to obtain a better initialization valuéor the above inference, we perform the
following EM algorithm instead of giving the distributiorf & randomly. This EM algorithm in-
corporates the above mentioned truncation [19]. In theelp;stve compute the expected value of
the posterior distribution of the hidden variables. Forgymsitionh;, we send a forward message
a(hi—n+14-1) in a single path from the start to the end of the chain (whighésstandard forward
recursion in HMM; Hence we use). Here we normalize the sum af considering the truncated
variablesu; ., 41.4—1-

Z Of(hifnJrl:ifl)
Z a(ui—n+1:i—l) P

Then, for every positioth;, we send a messag&h; 2., k;) in multiple paths from the start to
the end of the chain as inl(5),
Yoa(hipnyiio1)
hi—nt2:,hy) = P(w;|h; Ri—nt1:i—1, b)) P(hilhi—ny10-1) (B

B( +2:, 1) S o(Ui—nt1:i-1) (wi )Zﬁ( +1:i-1, 1)) P (Rl +1:i-1) (5)
This step aims at obtaining the expected value of the postéistribution (Similar construction to
use expectation can be seen in factored HMM [22]). In the &p-stsing this expected value of
the posterior distribution obtained in the E-step to ev@ihe expectation of the logarithm of the
complete-data likelihood.

Oé(hzenuzi) = (wi|hi) Z O‘(UifnJrl:ifl)P(hi|hi7n+1:i71) (4)

3 Joint Space Model

In this paper, we mechanically introduce a joint space mdd#ier than the ngram-HMM language
model obtained in the previous section, we will often enteuthe situation where we have another
hidden variableg! which is irrelevant toh® which is depicted in Figurel 2. Suppose that we have



the ngram-HMM language model yielded the hidden variabliggesting semantic and syntactical
role of words. Adding to this, we may have another hiddenaldes suggesting, say, a genre ID.
This genre ID can be considered as the second context whidteis not closely related to the first
context. This also has an advantage in this mechanicalrcatisin that the resulted language model
often has the perplexity smaller than the original ngramMilMnguage model. Note that we do
not intend to learn this model jointly using the universdtesta, but we just concatenate the labels
by different tasks on the same sequence. By this formulatverintend to facilitate the use of this
language model.

Figure 2: Figure shows the joint space 4-gram HMM languagdeho

It is noted that those two contexts may not be derived in aailegrning algorithm. For example,
language model with the sentence context may be deriveciname way with that with the word
context. In the above example, a hidden semantics overrssmig not a sequential object. Hence,
this can be only considering all the sentence are indepéndben, we can obtain this using, say,
LDA.

4 Intrinsic Evaluation

We compared the perplexity of ngram-HMM LM (1 feature), ngrelMM LM (2 features, the same
as in this paper and genre ID is 4 class), modified Kneser-N®pothing (irstim) [18], and hierar-
chical Pitman Yor LM [[48]. We used news2011 English test@ét.trained LM using Europarl.

ngram-HMM (1 feat) ngram-HMM (2 feat) modified Kneser-Ney ef@rchical PY

Europarl 1500k 114.014 113.450 118.890 118.884

Table 1: Table shows the perplexity of each language model.

5 Extrinsic Evaluation: Task of System Combination

We applied ngram-HMM language model to the task of systembioation. For given multiple
Machine Translation (MT) outputs, this task essentiallpnbines the best fragments among given
MT outputs to recreate a new MT output. The standard proeetchmsists of three steps: Minimum
Bayes Risk decoding, monolingual word alignment, and mamotconsensus decoding. Although
these procedures themselves will need explanations i twdenderstand the following, we keep
the main text in minimum, moving some explanations (but ndficent) in appendices. Note that
although this experiment was done using the ngram-HMM laggumodel, any NPLM may be
sufficient for this purpose. In this sense, we use the term MRistead of ngram-HMM language
model.

Features in Joint Space The first feature of NPLM is the semantically and syntackjcsiimilar
words of roles, which can be derived from the original NPLMe itroduce the second feature in
this paragraph, which is a genre ID.

The motivation to use this feature comes from the study ofaloradaptation for SMT where it be-
comes popular to consider the effect of genre in testses Jdper uses Latent Dirichlet Allocation



(LDA) [5] 46,[6,[45] 33] to obtain the genre ID via (unsupeedsdocument classification since our
interest here is on the genre of sentences in testset. Anguleeplace these labels on a joint space.

LDA represents topics as multinomial distributions overiti unique word-types in the corpus and
represents documents as a mixture of topics. d_dte the number of unique labels in the corpus.
Each labelk is represented by 8/ -dimensional multinomial distributiog. over the vocabulary.
For documentl, we observe both the words in the documefft’ as well as the document labels
D Given the distribution over topids;, the generation of words in the document is captured by
the following generative model. The parameterand 3 relate to the corpus level, the variables
belong to the document level, and finally the variablgs andw,, correspond to the word level,
which are sampled once for each word in each document.

Using topic modeling in the second step, we propose the badgarithm to obtain genre 1Ds for
testset as irL{5).

1. Fix the number of clustexs, we explore values from small to big where the optimal value
will be searched on tuning set.

2. Do unsupervised document classification (or LDA) on theseside of the tuning and test
sets.

(a) For each labek € {1,...C}, sample a distribution over word-types. ~
Dirichlet (-|3)
(b) For each documente {1,...,D}
i. Sample a distribution over its observed lab#]s~ Dirichlet (-|«)
ii. Foreachword € {1,...,N}V}
A. Sample a Iabe&i(d) ~ Multinomial (6,)
B. Sample awordugd) ~ Multinomial (¢.) from the labek = zi(d)

3. Separate each class of tuning and test sets (keep thaatrigilex and new index in the
allocated separated dataset).

4. (Run system combination on each class.)
5. (Reconstruct the system combined results of each clasemwing the original index.)

Modified Process in System Combination Given a joint space of NPLM, we need to specify
in which process of the task of system combination amongetprecesses use this NPLM. We
only discuss here the standard system combination usirfggsion-network. This strategy takes the
following three steps (Very brief explanation of these ¢higavailable in Appendix):

e Minimum Bayes Risk decoding [28] (with Minimum Error Ratedinming (MERT) process
(34])

BB = argming e R(E') = argming.ce Y | L(E, E')P(E|F)
E'eEg
= argming.cs Y (1 — BLEUg(E'))P(E|F)
E'€€E
e Monolingual word alignment
e (Monotone) consensus decoding (with MERT process)

I
Epest = argmng¢(i|éi)pLM(e)

=1

Similar to the task of n-best reranking in MERT process [48}, consider the reranking of nbest
lists in the third step of above, i.e. (monotone) consengasding (with MERT process). We do
not discuss the other two processes in this paper.

On one hand, we intend to use the first feature of NPLM, i.e.st#maantically and syntactically
similar role of words, for paraphrases. The n-best rerankinMERT process [43] alternate the



probability suggested by word sense disambiguation taslgube feature of NPLM, while we
intend to add a sentence which replaces the words using NFRrMhe other hand, we intend to
use the second feature of NPLM, i.e. the genre ID, to splibglsisystem combination system into
multiple system combination systems based on the genreuidesk. In this perspective, the role of
these two feature can be seen as independent. We condugtddifds of settings below.

(A) —First Feature: N-Best Reranking in Monotonic Consensis Decoding without Noise —
NPLM plain  In the first setting for the experiments, we used the firsufeatvithout considering
noise. The original aim of NPLM is to capture the semantycald syntactically similar words
in a way that a latent word depends on the context. We will be &bget variety of words if we
condition on the fixed context, which would form paraphrasdkeory.

We introduce our algorithm via a word sense disambiguaMBD) task which selects the right
disambiguated sense for the word in question. This taskdessary due to the fact that a text is
natively ambiguous accommodating with several differeaanings. The task of WSID [14] can be
written as in[(6):

1
P(synsef[features, 0) = Z(I‘Tturess H g(synset, k)f(featuré) 6)

wherek ranges over all possible featurefeaturd) is an indicator function whose value is 1 if
the feature exists, and 0 otherwigésynset, k) is a parameter for a given synset and feataiis,a
collection of all these parametersgfsynset, k), andZ is a normalization constant. Note that we
use the term “synset” as an analogy of the WordNet [30]: thesjuivalent to “sense” or “meaning”.
Note also that NPLM will be included as one of the featuresia equation. If features include
sufficient statistics, a task of WSD will succeed. Otherwisevill fail. We do reranking of the
outcome of this WSD task.

On the one hand, the paraphrases obtained in this way hawetatt aspects that can be called
“a creative word” [50]. This is since the traditional rescaithat can be used when building a
translation model by SMT are constrained on parallel carpimvever, NPLM can be trained on
huge monolingual corpus. On the other hand, unfortunatebyactice, the notorious training time
of NPLM only allows us to use fairly small monolingual corpalthough many papers made an
effort to reduce it[[31]. Due to this, we cannot ignore thet fliat NPLM trained not on a huge
corpus may be affected by noise. Conversely, we have no giggr¢hat such noise will be reduced
if we train NPLM on a huge corpus. Itis quite likely that NPLMga lot of noise for small corpora.
Hence, this paper also needs to provide the way to overcdifiutties of noisy data. In order to
avoid this difficulty, we limit the paraphrase only when itindes itself in high probability.

(B)— First Feature: N-Best Reranking in Monotonic Consenss Decoding with Noise — NPLM
dep Inthe second setting for our experiment, we used the firtife@onsidering noise. Although
we modified a suggested paraphrase without any interveitithe above algorithm, it is also pos-
sible to examine whether such suggestion should be adoptsat.olf we add paraphrases and the
resulted sentence has a higher score in terms of the modédigehdiency score [39] (See Figlie 3),
this means that the addition of paraphrases is a good chbitte resulted score decreases, we do
not need to add them. One difficulty in this approach is thatlavaot have a reference which allows
us to score it in the usual manner. For this reason, we adepigifre wayto deploy the above and
we deploy this withpseudo referencegThis formulation is equivalent that we decode these isput
by MBR decoding.) First, if we add paraphrases and the mdskntence does not have a very bad
score, we add these paraphrases since these paraphrasé\aegyrbad faiveway). Second, we
do scoring between the sentence in question wiithhe other candidategseudo referencg¢and
calculate an average of them. Thus, our second algorithmsgslect a paraphrase which may not
achieve a very bad score in terms of the modified dependencg ssing NPLM.

(C) — Second Feature: Genre ID — DA (Domain Adaptation) In the third setting of our ex-
periment, we used only the second feature. As is mentionditeiexplanation about this feature,
we intend to splits a single module of system combinatiom multiple modules of system combi-



c-structure f-structure

SUBJ[~ PRED john
NUM sg
PERS 3

S —
John NP PRED resign

resigned yesterday TENSE past
ADJ ([PRED yesterday])
Different structure Same representation
in c-structure in f-structure

/////f\\\\ SuBJ PRED jo
NP NP VP NUM ~ sg
‘ PERS

Yesterday John -
\Y

PRED resign
resigned TENSE past
ADJ ([PRED yesterday]

Figure 3: By the modified dependency scare [39], the scorkedd two sentences, “John resigned
yesterday” and “Yesterday John resigned”, are the sameréghows c-structure and f-structure of
two sentences using Lexical Functional Grammar (LEG) [8].

nation according to the genre ID. Hence, we will use the medfilsystem combination tuned for
the specific genre I,

(D) — First and Second Feature — COMBINED In the fourth setting we used both features.
In this setting, (1) we used modules of system combinatioithvhre tuned for the specific genre
ID, and (2) we prepared NPLM whose context can be switcheddas the specific genre of the
sentence in test set. The latter was straightforward shresettwo features are stored in joint space
in our case.

Experimental Results ML4HMT-2012 provides four translation outputsi(to s4) which are
MT outputs by two RBMT systemsyPERTIUM and Lucy, PB-SMT (Moseg and HPB-SMT
(MosE9, respectively. The tuning data consists of 20,000 seetpa@s, while the test data con-
sists of 3,003 sentence pairs.

Our experimental setting is as follows. We use our systembaaation modulel[18, 17, 35], which
has its own language modeling tool, MERT process, and MBRdieg. We use the BLEU metric
as loss function in MBR decoding. We use TERas alignment metrics in monolingual word
alignment. We trained NPLM using 500,000 sentence pairs fEnglish side of EN-ES corpus of
EUrOPARI.

The results show that the first setting of NPLM-based pai@g#d augmentation, that is NPLM
plain, achieved 25.61 BLEU points, which lost 0.39 BLEU pgeiabsolute over the standard sys-
tem combination. The second setting, NPLM dep, achievetithji better results of 25.81 BLEU
points, which lost 0.19 BLEU points absolute over the statidgstem combination. Note that
the baseline achieved 26.00 BLEU points, the best singlkesys terms of BLEU was s4 which
achieved 25.31 BLEU points, and the best single system msaf METEOR was s2 which
achieved 0.5853. The third setting achieved 26.33 BLEU tgpivhich was the best among our
four settings. The fourth setting achieved 25.95, whichgaim lost 0.05 BLEU points over the
standard system combination.

Other than our four settings where these settings diffectvfeatures to use, we run several differ-
ent settings of system combination in order to understamgéinformance of four settings. Standard
system combination using BLEU loss function (line 5 in TaB)e standard system combination
using TER loss function (line 6), system combination whosekbone is unanamously taken from
the RBMT outputs (MT input s2 in this case; line 11), and syst®mbination whose backbone is
selected by the modified dependency score (which has thredieas in the figure; modDep preci-

'E.g., we translate newswire with system combination motluted with newswire tuning set, while we
translate medical text with system combination module dumith medical text tuning set.

Zhttp://www.cs.umd.edw/snover/terp

*http://www.statmt.org/europarl
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sion, recall and Fscore; line 12, 13 and 14). One interestiragacteristics is that the s2 backbone
(line 11) achieved the best score among all of these vanigtidhen, the score of the modified

dependency measure-selected backbone follows. From thesgwe cannot say that the runs re-
lated to NPLM, i.e. (A), (B) and (D), were not particularlycessful. The possible reason for this
was that our interface with NPLM was only limited to parapgas, which was not very successfuly
chosen by reranking.

NIST BLEU METEOR WER PER

MT input s1 6.4996 0.2248 0.5458641 64.2452 49.9806
MT input s2 6.9281 0.2500 _ 0.585344662.9194 48.0065
MT input s3 7.4022 0.2446 0.5544660 58.0752 44.0221
MT input s4 7.2100 _0.2531 0.5596933 59.3930 44.5230

standard system combination (BLEU) 7.6846 0.2600 0.564395%56.2368 41.5399
standard system combination (TER) 7.6231 0.2638 0.5652796.3967 41.6092

(A) NPLM plain 7.6041 0.2561 0.5593901 56.4620 41.8076
(B) NPLM dep 7.6213 0.2581 0.5601121 56.1334 41.7820
(C) DA 7.7146 0.2633 0.5647685 55.8612 41.7264
(D) COMBINED 7.6464 0.2595 0.5610121 56.0101 41.7702
s2 backbone 7.6371__0.26480.5606801 56.0077 42.0075
modDep precision 7.6670 0.2636 0.5659757 56.4393 41.4986
modDep recall 7.6695 0.2642 0.5664320 56.5059 41.5013
modDep Fscore 7.6695 0.2642 0.5664320 56.5059 41.5013

Table 2: This table shows single best performance, the padoce of the standard system combina-
tion (BLEU and TER loss functions), the performance of fattings in this paper ((A), .,(D)), the
performance of s2 backboned system combination, and tfi@rpemce of the selection of sentences
by modified dependency score (precision, recall, and Feseach).

Conclusion and Perspectives

This paper proposes a non-parametric Bayesian way to neteNPLM, which we call ngram-
HMM language model. Then, we add a small extension to thisdncatenating other context
in the same model, which we call a joint space ngram-HMM laggumodel. The main issues
investigated in this paper was an application of NPLM inrglial NLP, specifically Statistical
Machine Translation (SMT). We focused on the perspectivasNlPLM has potential to open the
possibility to complement potentially ‘huge’ monolinguakources into the ‘resource-constraint’
bilingual resources. We compared our proposed algoritimdsodhers. One discovery was that
when we use a fairly small NPLM, noise reduction may be one twagnprove the quality. In our
case, the noise reduced version obtained 0.2 BLEU pointsrbet

Further work would be to apply this NPLM in various other tei#k SMT: word alignment, hierar-
chical phrase-based decoding, and semantic incorporatesyStems in order to discover the merit
of ‘depth’ of architecture in Machine Learning.
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