QPOINS G2, December 11413, 2002, Reims, France

LOAD BALANCE PROTOCOL OF CLUSTER ON GRID :
PERVASIVE MAXIMUM ALGORITHMIC PARALLELISM

Tsuyoshi Okita*

Abstract: Pervasive computing softwdare helps (o manage information and reduce the complexity af available computing resources
in g timely manner. On one hand, a grid is a resource whose information is changing anytime and anywhere, where the availability
of CPUs is only informed in run time when a cluster asks fo the grid. On the other hand, a cluster is often implemented in a siatic
way, which assumes some particalar parallel architecture and the number of CPUs. Even when a cluster can comswnie maxinon
avaitable CPU resowrces, il a cluster is implemenied assuming the number of CPUs, a cluster could not run using more than
this number of CPUs, Our mechanism of load balance protocol of cluster provides a dynamic way of implementing a clusier thal
can consume maxinum available CPU resources on run time. In order o do so, we propose Iwo mechanisms: 1o provide yet
another (graphical) parallel language (o describe clusters and 1o provide the protocols between a cluster on a grid. While many
parallel languages resolve parallel architectire dependencies in compile time, owr parallel language resolve paralle! architecture
dependencies in run rime. Our load balance piotocol bases on this {graphical) paraliel language and if provides implementation
of them.

Keywords: Cluster, Purallel System, Resource Allocation, Pervasive computing.

1 Introduction

Open Grid Services Architecture [Foster] is advocated in order to integrate services across distribuied, helerogeneous,
dynamic “virtual organizations” {formed from disparate resources within a single enlerprise and/or from external re-
source sharing and service provider relationships. Grid service defines standard mechanisms for 1) creating, naming,
and discovering transient Grid service instances, 2) providing location transparency and mulliple protocot bindings for
service instances, and 3) supporting integration with underlying native platform Jacilities. Grid Services concern with
specified interfaces and behaviors, such as creation (factory), global naming (GSH) and references (GSR}, hfetime
management, registration and discovery, authorization, notification, and concurrency.

In such a pervasive computing environment of a grid, the number of available CPUs is changing anylime and
anywhere. Although an application is often implemented statically and could not use maximum available resources, if
an application is implemented in an adaptable structure to this flexible available numbers of CPU, an application can
be run using maximum available resources.

Examples of dynamically adaptable applications are found in cluster computing and energy-efficient scheduling,
In cluster computing, Parallel DFES [Grama9%] observes idlencss of CPUs and let migrate tasks between CPUs based on
dynamic scheduling algorithis such as round-robin and FIFO manner. Demerit of this approach is that this approach
docs nol consider a stucture of an appiication even if it is available. A classical task migration in operating system,
such as pthread Library [POSTX1003.1b] {POSIX1003.13], is the same fold, where the load balance is often discussed
without any consideration of the structure of an application, but systems as a whole. In an energy efficient run-time
scheduling system [Yang01], a structure of an application is closely refated Lo task migrations, where migration {or
scheduling) decision whether a task runs on DSP or CPU is made at run-time based on attributes of tasks, which are
energy consumplion and exccution ime in this case, Yang’s view is nol from an application, but from a scheduier. He
does not mention how Lo design a dynamically adaptable structure,

These examples show the necessity to provide general dynamicaily adaptable structure of an application for a given
number of CPU resources. There are two issues in order lo achieve this: 1) how to deseribe an application (language is-
sue} and 2) how o implement it (protocol issue). Parallel languages are often classified in two approaches [Kumar93):
implicit parallel approach and explicit parallel approach. In impiicit approaches such as NESL {Blelloch90], the pro-
gram itself is scquential and a clever paraflel compiler maps resources extracting implicit parailel structures from the
sequential program. In explicit approaches, there are mainly three paradigms: message-passing language paradigm,
data-parailel fanguage paradigm, and shared-data language paradigm. Among them, data-parallel language paradign,

3 CPUs are avsibable in 2 gaid AC are avetbable ina il

il A3 ¢ Crus ot cruz e cros
farki){ -
Bi; & { A l
Jetse] P
S -~ tarkf)} -
o A €« l n " [e
Yl . 3

£

LU PAY U4

forkip{
B
s I]
ik i
R il e

b [H 7

Bk in + ytid

cmn Co e e P
[waridl AL N

By AL “E
- o B u
3 .. .
1

£ o idte idtle il

Figure 1: Parallel Architecture Depeadent Implementation

such as C*, takes an approach not to describe parallel architecture dependent description in a program, Bul as a
compifer do mapping between virtual CPU to physical CPU, it is parallel architecture dependent in compile lime.

Problems of these two approaches in our aim are as [ollows. In explicit approaches, 1) the structure made mapping
to physical CPUs at compile time and 2) process operation, such as multi-tasking and micro-tasking, does not fit for
dynamic decomposition of tasks. In implicit approaches, the technology (o extract paratlel structures from the sequen-
tGal program is still in difficulty, where to extract even the Carmon’s algorithm is in difficulty in matrix multiplication
[Blellech®0]. Qur language is in the middle of these two approaches, where we describe program in explicitly of
its parallel struclure of a program, but the mapping to physical CPUs are delayed to its execution time (or run-time)
and language interface is paraliel architecture independent way. If we look cur language in different perspectives,
our language can be seen as meta-paralle] language in the sense that it extracts only important paralle] hehavior of a
program. Our language can be implemented using any three paradigms of explicit languages.

As we takes the approach 1o describe explicitly in an application, there needs a protocol between a grid environment
and fragments of an application. Our FlexGrid provides basic parallel operations, such as decompose, merge, and
permutation, which are not parallel architecture dependent.

2 FlexGrid Overview

In explicit parallel language with architecture dependency, the decomposition of tasks is represented by process cre-
ation, such as fork and spawn. The figure 1 shows the description of paralle] architecture dependent implementation
of an application. Even though we could know in advance that this application wiil run on different numbers of CPUs,
we could not change the structure of an application. The right side of the figure 1 shows when the CPU availabilily is
mare than implemented CPU numbers, say 4 CPUs. As each fragment is implemented using fixed numbers of CPU,
cach fragment could not run more than this fixed numbers of CPU. BEven they can use 4 CPUs, this application only
uses 1, 2, or 3 CPUs.

However, as the resource availability of a grid is dypamic and unexpected in nature, an application would be
appropriate to be made more flexible so as to make decision according 1o its rescurce availability in run time. The
figure 2 shows our implementation of this idea. In order to implement this feature, architecture dependent operation,
such as fork and spawn, is not appropriate and replaced by the decompose operation that is archilecture independent,
which is shown in the figore. This application is implemented using 4 maximum virlual CPUs. This application runs
according to the available numbers of CPUSs. The figure shows consecutively I, 2, and 3 CPU cascs of its available
CPU resource. When 3 CPUs are available, (his application runs on 3 CPUs. When 2 CPUs are available, it runs
on 2 CPUs. When one CPU is available, it runs on 1 CPU. In cwr approach, advantages are load balance, while
disadvantage is its overhead of communication protocol, which is presented in later. In grid computing, as we cannol

cryl <ruz Crul

< o i

CPUL cpue

Paradict Diagram

crrn

A

B

Figure 2: Parallel Architecture Independent Implementation
expect the available CPU resources, flexible structure of an application would expected to attain good load balance.

3 Parallel Graphical Language

Our (graphical) parallel language only focuses on the important behavior of parallel programming irrelevant (¢ the
underlying parallel architecture. For example, while fork/spawn operator always create another thread in compile
time, decomposition operator in our language does create another thread depending on the situation in run time.

This (graphical) parallel language shown in the figure 3 is for designing the algorithm of an object thal is possible
10 reside across CPUs. Parallel language provides 1) task notation, 2} decomposition / merge / permutation notation,
Task notation does not only describe processes but also data structures, which enable the notation of data and process
parallelism.

This language bases on a tagk, which has three atuributes:) name, 2) data, and 3) process. Relationships between
lasks are described using other operalors, such as decomposition, merge, permutation, and communication, A task
could be hierarchically structured, which admits a task consists of several tasks. This notation would ease the import /
export of the parallel stricture that is already designed by somebody else. A task that has the decomposilion operator
has the possibility 1o spawn ancther task, although those paths wiil be considered not in compile time, but in run time,
This notation shows both of data and control parallelism, where data parailelism is shown in the elements in vectors
and matrices, while the control paralielism is shown in the processes in the task. For data parallelism, paralicl language
suppor(s two data siruciures: a matrix and a vector. For contrel parallelism, parallel language provide the nolatien that
one task could contain and decompose several small tasks in a stratified manner. 1Cis noted that an acyclic task graph
is employed in a sensc that it facilitates understanding of task execution flows and 1ask dependencies. The demerit of
this acyclic task graph is that it lacks description of data paralielism.

The figure 4 shows the overail procedure using a parallel language. The outcome of this parallel language is
translated into an acyclic task graph. Lisch process and data is mapped onto the underlying paraliel platform as
in the sequence charl in the right parl. In our language, resource ailocation is a task of CPU resource broker. In
this process, as there are varictics of possibilities in underlying parallel platforms, this resource mapping (step3) has
various solutions and investigated by the CPU resource broker,

The figure 7 shaws five examples. In each five figures, the left side is a figure using our Parallel Janguage, while
the right side is a figure using acyctic graph. The first exampic shows the slalic decomposition of one task (0 four

Lk task name static decompusiton - i
data Slatic (n-ary)decunpasition m PRecampusition
proess dynanic deconmposition

dynamicin-aryjdecomposition -

sync merge

itk

wewor CLTTT7T00

syne (n-aryhnietge

Merge
oautrix HEYNC M
{=imesh)y WY (n-aryInerge
SYne communication
st (’) sy ivati
AsyI cotmuanication
Communicarion
ond 7 syne broadeast
Order ol exceation e asyne broaduast

all-t0-a]] broadcast

permulation
Peamutution
DepiisFivs Permutution

BreadihFirstPennutation

Figure 3: (Graphical) Parallel Language Summary

tasks, where a black (riangle shows that a merge operation is done soon after some task finishes its decomposed task
(asynchoronous merge), The second example shows the hicarchical tasks. Inthis case, a task contains three tasks. The
third example shows a matrix multiplication by Cannon’s algorithm. The fourth example shows an example of guick
sort, where the two descriptions are iteratively applied for the computation. The {ifth example shows an example of
parallel depth first search, where permatation operator is used for describing the order of search,

4 CPU Resource Broker

The FlexGrid is implemented as a CPU resource broker as in the figure 5. The functions of the dynamic task service
manager are 1) decompeosition, 2y merge, and 3) permulation.

The real task of this dynamic task service manager is 1o schedule processes that utitize various resources in the grid,
There are two ways (o schedule: global seheduler schedules or cach CPU has scheduler. The right side of the figure 5
shows the glohal scheduler approach. In our implementation of CPU resource broker, it returns current available CPU
resources and schedules in FIFO manners.

Table 1: Protocol Name

[Type | Protocol Name

Decomposition DEC _static_req, DEC static.ack, DEC. dynamic reg, DEC dynamic.ack,
DEC_complele.ack, DEC_complele_req

Merge MERGE _syne_req, MERGE_sync.ack, MERGE._dynamic.req,
MERGE _dynamic.ack, MERGE _complele req, MERGE _complete.ack

Communication COMM._sync.req, COMM _sync_ack, COMM _sync broadeast req,
COMM._sync_broadeast_ack, COMM _async_broadeast_req,
COMM async_broadcast _ack, COMM _alltoall broadeasl.req,
COMM._alltoall_broadeast.ack

Permutation PERM _general req, PERM.gencral.ack, PERM DT req, PERM._DF .ack,
PERM_BF req, PERM.BF.ack

csource Allncation by CPU resouree bwkcr(Sllcp})

Acyelic Task Graph (Siep2)
PR e JONE s TOPIOI .1 SRPRPON . PP

I

|

!

[o |
e i
, |

i

~ Run (Stepd)

S
Jhan’

- Run (Stepd)

Voresintz | s

Figure 4: Parallel Language Overview

5 Results

We simulate a matrix multipfication of Cannon’s ajgorithm [Kumar93]. Our description of Cannon’s algorithm of 4 x
4 multiplication is depicted in the third example in the figure 7. This application is decomposed in 1) decomposition
of tasks, 2) malrix shift operation, and 3) matrix A and B individual operation according (o the Cannon’s algorithm.
In here, (he problem is dynamically decomposed in four tasks depending on the times of shift in matrix A and matrix
B. In cach task, the row of matrix A is decomposed in four tasks which does left shift O, left shoft 1, right shift 2, and
right shift I respectively. The column of matrix B is also decomposed in four tasks which does left shift 0, left shift 1,
right shift 2, and right shift | respectively. Results of four tasks in matrix A and four rasks in matrix B are multiplied
in corresponding element. As there are four tasks, those four results are merged back and added in corresponding
clement. In this case, 4 x 4 matrix multiplication is wrillen as the maximum parallelism 32. If we decompose further
of the matrix A and matrix B, (he maximum paralielism would be 128.

The comparisen is made belween the one which uses our approach and the one which is written in a architeclure
dependent way, Major concerns are as following. The bottleneck of our protecol is the communication latency caused
by the base infrastructure, such as message-passing of PYM 3.4 {PVM94] and MPI [MP197]. Comnunication Jatency
varies dynamically whether it is loosely-coupled systems or tightly-coupled systems. As is shown in the following
results, if this communication lalency does not become a small value, granularity of the decomposed task should be
enlarged. Another smali concern is following, Our experiments are done on single CPU by practical reasons. We limit
by a scheduier not 1o spawn asks more than the assumed CPU aumbers, Our protocol is described using C on SGI
Indigo2 which runs at 200 Mz,

The teft side of graph 6 shows the carve of paratlel archilecture independent implementation (our approach) and
dependent implementation. In our implementation, graphs are shown in two lines in the bodom part and the middle
parl. The bottom line indicated by the case 1 assumes the communication latency of the infrastructure is zero. The
middle line indicated by the case 2 assumes the communication tatency of the infrastructure is 1 ms. In hoth cases,
protocol overhead increases belween the 2771 and 2. In the parallel architecture dependent implementation, if the
numbers of CPU are less than (he assumed CPU number in its implementation, the overhead is only synchronization
overhead. If the numbers of CPU are more than the assumed CPU number, the additional atlocated CPUs are all in
idle, which let increase the idle time. 11 is noted that although (his graph is depicted using a continuous value, we
measured diserete values of CPU numbers. The right side of graph 6 shows the execution time in various available
CPUs, where the effect of the increase of CPU resources is radically decayed.

Sehednler e ez [NLI)

. A
BIEM wric. rey D
BHEC, alatic, ek POt resmiree Jin

chient client

resource request
resouree L
. o h ¥ [H]
availability
inquiry I
#

broker

"
1 MERGE complete 1rg g """
(:(!mpnling resource
Figure 5: CPU Resource Broker
Teapleneatod i b CILY
Taplenieated b 2 o 3 CPL
" - Tmplemented in 47 CPUs "
i Tmplemcnted in %115 Chlis
- Dinplemented in 16-3F CPis
< Taplennented in 3263 CPUEs
m Tmpleomenced in 64-177 Cifs "
inpkenented in 126255 CPUS ol
£
&
X 4
2 i
o |
" CIRE 3
" " m—k
A Y B R i i N H e
Available morbers af CPU ,” Availible numbens of CIL

!
Cuse b

Figure 6: Resull of Protocol Overhead (left) and Execution Time of Qur Approach of Matrix Multiplication (right)

6 Camparison to Other Parallel Languages

This (graphical) parailel language is in between of explicit approaches and implicit approachies, which is only fo-
cuses on particular paratlel behaviors, such as decomposilion, merge, communication, and permutation. However,
this language only has those primitives related to paraliel behaviors and lacks major language primitives, such as ar-
gument decarations, contro! sequences {for/if/while, etc), etc. In this sense, this language does not supercede other
parallel Janguages and need to be implemented on other parallel fanguages. In this sense, this language is rather a
madeling Janguage (or specificalion language) as is only focuses on particular paraliel behaviors which is architecture
independent.

Merits of this approach are following: 1} effective for a dynamically {run-time) schedulable cluster application
as it clarifies parallel behavior {exampies arc a cluster on a grid, energy-aware scheduling, etc), 2} effcctive for a
specification language for parallel sysiems as is only focused on particutar parallel behaviors, 3) no waste of pre-
vious legacies of other parallel languages as this language can be implemented on other paralle] languages, and 4)
{compared to implicil approaches) no need for clever compiler because algorithmic paralielism is already wrillen by
a programmer. For the first item, explicit approach uses fork/spawn to invoke parallel execution, which is architecture
dependent. In order to do a dynamically schedulable structure, it needs some intermediate structure which would be
stmilar to our parallel language. Data paralle] fanguage has no architecture dependencies, but as it describes 1oo much
detail for a dynamically schedulable structure, it also needs some intermediate structure for lessening complexity of
programmers. For the second item, explicit and implicit paraliel language describes too much detail.

Demerits are 1) overhead if an application does not need a dynamically {run-time) schedulable structure, 2) over-

1. Stalic Deconiposition Example”

Figure 7: Five Examples using (Graphical) Paraile] Language

head depending on the communication infrastructure, 3) not effective for describing detaiis of an application, and 4)
execution time which is not always optimal,

7 Conclusion

This paper presents two basic mechanisms: the language how to describe a cluster on a grid and the lead balance
protocoi 1o implement this language. The aim of this paper is 10 prepose a mechanism which could achieve pervasive
maximum algorithmic parallelism on a given numbers of CPUs which is enly known at run-time.

Firsly, proposed (graphical) parallel language provides the way 1o describe a parallel program. Our parallet lan-
guage is in between explicit parallel language approach and implicit parallel language approach. In order to remove
architeciure dependencies from explicit parallel fanguage approaches, important paraliel behaviors such as decompo-
sition / merge / permulation are focused as the primitive of our language. Using this paraliel language, maximum
algorithmic paralielism is achicved explicitly written in a program. This language can be used from fine-grain par-
allel algorithm, such as Cannon algorithm, Fox algorithm, sort algorithm, and parallel DES, Lo coarse-grain parallel
algorithm,

Sccondly, the load balance prolocol is presented. This protocol is an honest implementation of our parallel lan-
guage.

Thirdly, we measure the effect of our approach using a simple example. Our protocol replies on the underlying
network infrastructure. I the underlying-infrastructure provides light communication overhead, our load balance
protocol can overcome when the numbers of CPUs increases more than the assumed numbers of CPUs. While the
underlying infrastruciure provides communication overhead such as Ims in one way communication, we have (0
enlarge a granularity of a decomposed fragment of an application so as to confirm this communication overhead.

References

{Blelloch90] Blelloch, G., “Nesl: A Nested Data-Parallel Language,” Technical Report CMU-CS-92-103, CMU,
1990,

{Foster] Foster, 1., Nick, J.M., Tuecke, S., “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” hitp:/fwww.globus.org,

[Grama99] Grama, A.Y., Kumar, V., “State of the Art in Parallel Search Techniques for Discrete Optimization Prob-
lems,” IEEE Transactions on Knowledge and Data Engineering, Volume 11, Number 1, fanuary/February 1999,

[Kumar93] Kumar, V., et al., “Intreduction 1o Parallel Computing: Design and Analysis of Algorithms,” November,
1993.

[MP197] Message Passing Interface Forum, “MPI-2: Extensions to the Message-Passing Interface,” July, 1997,
[POSIX1003.13] “IEEE Standard 1003.13, POSIX Real-Time Profiles; also ISO/EC standard 9945-1 (1996)™.

[POSIX1003.1b] “1EEE, Portable Operating System Interface{POSIX)~Parti: System Application Program Interface
(APD).”, 1990.

[PYM94] Geist, A., et. al “PVM: Parallel Virtual Machine, A Users” Guide and Tutorial for Networked Pavallel
Computing”, MIT Press, 1094,

[Yang01] Yang, P, et.al, "Energy-Aware Runtime Scheduling for Embedded-Multiprocessor SOCs,” IEEE Design &
Test of Compulters, September-Octorber, 2001.

