PRTccp: Priority-driven Real-Time Concurrent €onstraint Programming

Tsuyoshi Okita

1 PRT-UMIL Methodology

Component-based development of real-time systems, such as Real-Time CORBA, s one of the most vivid research arcas
in object-oriented systens. Our research [Oki01] {Oki0Z] focuses on the necessary extension of UML. to support such a real-
(ime component develapment. Although current UML {UML14} includes partly the deseription of periodic task, this is less
efficient to describe real-time constraints that are cross-cut similar o aspect oriented programming [Kicz97] because of their
end-1o-end nature. Few efforts have been made for supporting this real-time component-based development other than UML
organization themselves.

We are proposing PRT-UMIL. methodology for supporting reai-time and parallel systems, based on orthogonal analysis (o
object-oriented systems. For the real-lime systems, we provide concurrency diagrams. Our aims are 1) (o describe real-time
constraints, and 2) to provide scheduling policy independent way, 3) to provide flexible simulation environment.

The figure 1is a summary of a concurrency diagram. As real-time constrain{s are often crossing over abjects, we inlroduce
a virtal thread o deseribe such an end-to-end real-time constraints. We make distinction between WCET (Worst Case
Execution Time) and real-time constraints. The left part of the figure shows the notation of arrival and constraints pattern,
There are four arrival palterns: periodic, sporadic, aperiodic, and init vthread, whilc there arc five constraint paiterns: 1)
classical deadline constraing, 2} firm quality imprecise constraint, 3) firm deadline imprecise consiraint, 4) no constraint, and
5) temporal distance constraint, Vertical axis is a time axis and its length means duration.

Fr Benen Barfndinph

Figure 1. Concurrency Diagram Notation Summary (Left) and Overview (Right)

2 Real-Time Formal Language and Concurrent Constraint Programming

PRTcep is one of the precedence of cep (concurrent conslraint programming) [Sar87]. Teep [BoerQ0] is a real-time
extension of this cep in order Lo describe a reaclive system, where we claim that the Teep approach is not enough (o describe

priorily-driven real-time systems. Teep introduces the clock coneepl and non-determinisim 1o the concurrent constraint
programming in order to handle a real-tme system. Although teep is intended for real-time system, to be precise, their
intention is not a priority-driven system but a reactive system. In reactive systems, 1} there is an assumption that most of
the calculation is finished within one clock, 2) ask / lell operation is finished within one clock, and 3} scheduling are always
the best answer. However, priority-driven system is different in the following sense:) The calcufation needs more than one
clock, 2) ask / teli operation needs no negligible clocks, and 3) scheduling is not the best but just optimal and is decided by
force by scheduling policy.

For the third one (scheduling policy), next figure 2 explaing the difference, H the state S1 is defined as the state transition
from the state SO in the case of hardware, it transits from the state 50 o S1 at time X=0. However, in the case of sofiware that
has a scheduler, there is no guarantec that the targeted state is achieved. All the behaviors are controlled with the scheduler
in the operating system. All the processes are queued in the scheduler 10 ask for its permission.

;
|
|
!
i
I
I
I
[

Figure 2. Timed automaton in hardware and (priority-driven} software

3 PRTccp

PRTcep bases on teep [Boer00] and introduces a preblem solver and priority, The former is a similar approach by Gupta
enlarging cep in their *ask’ operation (o consume constraints. Original cep has no concern about sobving its constraint and the
computalion agents throw a constraint o the global store and wait until it is solved. This problem solver signifies a scheduler
in a priority-driven system. The latter is the approach taken practically by real-time schedulability analysis [Liu00], Although
real-time constraints are visible 1o human beings, priozity-driven system uses priority instead of real-time constraints and this
conversion is vital (o caleulate using schedulability analysis,

A problem solver can aceess to the globaf store asynchronousty and if agent store constraints, in the next clock, a problem
solver knows that the constraint is increased. We introduce two types of constraint: T¢ (real-time constraints) and Sc (8yn-
chronization constraints), where we assume that problem solving is assumed (o consume {ime. Non-determinism of problem
solving is shown by local choice. Sets of constraints have priority, where the entailment of constraint subjects (o this, A
virtual thread tell to the global store that it has to resolve fegee Unit of computation and it has to be done within £end—to—end-
When a problem solver entails this constraint, teye. is decreased. Each Te has a global timer that is set at release time and it
timeouls when it reaches tend—to—end- 1he main hody of Sc is a shared variable between virtual threads. When the condition
of Scis satisfied, it is possible (o reduce a constraint of Te.

Definition ¥ (PRTeep) Assuming o given constraint system C the syntax of agents is given by the following grammar,

A = stop | error | B2 ask(c) — A; | tell(e) | now cthen Aelse BIA || B | Ix Al p(t) | 4B | A o priority |
ProblemSolver. cum Se| Te
where the ¢,c; are supposed to be finite constraints in C.

The operational model of PRTeep is described by a transition system where cach transition step takes one time unit, where
there are three kinds of transition: 1) congruence, 2) unprioritized timed transition, and 3) prioritized timed transition.

Definition 2 (Prioritized Timed Transition) priority(Tu) < priovity(Te), (Ta ® Tua) priovity(Te), B T ®
T) o priovity{Te).

The next example shows how a rate-monotonic scheduler is described using PRTcep.

Example 1 (Rate-Monotonic Scheduler) In a rate-monotonic scheduler, task of short period has a higher priority. Each
vthrecd has a static priovity. When all the constraints are solved, RMSystem stops.

RMSystem = VThread, [V Threads... [V Thread, ||RMScheduler;
Vhread; (TC1) = (delay{Te); tell{Te); ask{Tei}) — stop) o Pricrity;

RMScheduler{ Priorittschedulers Ton @ Ter. Tom) =

»,0

(Priorityscheauter < mas(Priority,, Priorily, ., Prioritym} 3
RMScheduler{max{Priorityn, Priorityi, ..., Prioritym), Tea @ Ter...Tem);
|PRICRITIZED TRANSITION]

+

L L I Loy t,1
(Prior#lysoh eduien == maes{Priority,, Priorily;, ., Prioritym} —- 3

RM Scheduler{Priorityachednior: Ton @ Ter . Tem) [TIMED TRANSITION)

Toi{ Priorityi, phasey, endTolind; eweei, elapse;) =

(Priorily,eheduten == Priovity:, exees <> 0, elapse; <> endTolind) =
T Priority, phase:, endToBEnd:, exeer — 1, elapse; 4 1); [DISPATCH)
_.I..

(Priovillischeduler <> Priority, exec; <> 0, clapse; <> 0) —
Tei(Priority, phase:, endTolnd,, execy, elupse; - 1) [NO DISPATC]

+
(elapse; == endToBnd;} = ervor; [TIMEGUT]
|

{ereeq == 0} -+ stop; [JOB COMPLETE)

4 Conclusions

This paper presenls real-tme formal Tanguage PRTeep, which complements priority-driven concerns in Teep. Firsl, we
showed the necessity of formal language for priority-driven system compared Lo reactive real-time system. Secondly, we
showed the grammar of PRTceep. Thirdly, we showed a small example of scheduler.

References

[Oki01] “Component-based Development of Embedded Seftware,” Okita, T., Master Thesis, Vrije Universiteit Brussels,
2001,

[Oki02] “UML Extension for Real-Fime Parallel Compulation : Parallel and Concurrency Diagram,” Okita, 1., 27th
IEEE/NASA Software Engincering Workshop, 2002 (submitted}.

[Kicz97] “Aspect-Oriented Programming,” Kiczales, G., Lamping, [, et.al., ECOOP, 1997.
[Liu00] “Reai-Time Systems,” Liu, 1.S., Prentice Hall, 2000.

{Boer00] “A Timed Concurrent Constraint Language,” Boer, ES., Gabbrielli, M, Meo, M.C., Information and Computation,
2000,

[Sar87] “Concurrent conslraing programming,” Saraswal, V.A., ACM Doctoral Dissertation Awards, MIT Press, 1993,

[UML14] “OMG Unified Modeling Language Specification”, Object Management Group, Version 1.4 beta R1, November,
2000.

