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ABSTRACT
This paper describes the textual entailment system devel-
opped at Dublin City University for participation in the
textual entailment task in NTCIR-10. Our system is a lo-
cal graph matching-based system with active learning: we
explore reducing the unknown words and unknown named-
entities, incorporating meaning in parentheses / rhetorical
expressions / semantic roles, and employing text under-
standing technique using simple logic. We deploy an ad-
ditional feature of language model from deep learning. Our
result was 80.49 for macro F1 score, 84.95 for precision for
the positive entailment, and 79.95 for recall for negative en-
tailment.
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1. INTRODUCTION
This paper describes the textual entailment system devel-
oped at Dublin City University for participation in the tex-
tual entailment task in NTCIR-10 [40]. A textual entail-
ment task addresses the variability of semantic expression
whether the same meaning can be expressed by or inferred
from different texts [13]. More formally, let us call a pair
of text expressions T (”Text”) and H (“Hypothesis”) where
the entailing side is T and the entailed side is H. A textual
entailment task is to judge for a given pair (T,H) whether

T entails H or not: T entails H if a human reading T would
infer that H is most likely true. The variability of seman-
tic expressions is a common theme in various applications
in NLP including Question Answering (QA), Information
Extraction (IE), summarization, and machine translation
(MT). A textual entailment task typically involves a wide
range of NLP tools in the domain of semantics and various
approaches have appeared.

A graph matching approach [19] is a classical approach. Sen-
tences are represented as normalized syntactic dependency
graphs and entailment is approximated with an alignment
between the graph representing the hypothesis and a portion
of the corresponding graph(s) representing the text. Unfor-
tunately, this approach is known to have three problems: (1)
other material in the text will not affect the validity of the
match since it assumes the upward monotonicity, (2) drop-
ping a restrictive modifier does not preserve entailment in
a negative context since the search is based on global fea-
tures, and (3) it has the inherent problem that alignment
and entailment determination is confounding. MacCartney
et al. [23] instead employ typed dependency graphs, par-
tial alignment between the typed dependency graphs rep-
resenting the hypothesis and the text, and a decision of
entailment. Mirkin et al. [26] deploy the partial graph
which they call a subsentential textual entailment. Ben-
tivogli et al. [4] focus on coreference in the context of dis-
course. First, the topic is often among coreferent (In event
coreference resolution, event is often among the topic) and,
hence, anaphoric NPs seem to be important which are re-
lated to the second subproblem in a coreference resolution
task consisting of three subproblems: named entity recog-
nition, anaphoricity determination, and coreference element
detection [38]. Anaphoricity determination is to extract de-
terministic anaphoric NPs from the text in the case of En-
glish [2]. Second, the resolution of time / space references
are in itself necessary to determine whether T entails H.

Our approach is a graph matching-based approach similar
with Haghighi et al. [19], with the similar modification by
MacCartney et al. [23] or Mirkin et al. [26]. Especially, we
explore various preparation methods in its preprocessing in
order to augment the indispensable data for graph matching:
hence, this is active learning. The characteristics of our sys-
tem lies in these three. First, our system prepares indispens-
able additional data with preprocessing which reduces the
unknown words and unknown named-entities, incorporates
meaning in parenthesis / rhetorical expressions / semantic



roles, and prepares the (simple) text understanding capa-
bility in graph matching. Second, in psychology and color
comparison [15], the comparison between two with a big dif-
ference tends to be avoided. This is called a principle of just
noticeable difference. Followed by this, our approach tries
not to compare T ′ and H in big difference. We tried to de-
cide whether this T entails H or not within a single aspect
with very small difference. Third, the context-dependent
language model is developed in the context of deep learning
which became popular recently [3, 37, 25]. This context-
dependent language model is reported to be of less perplex-
ity than the state-of-the-art language model. As is shown by
Collobert [11], this context-dependent language model facil-
itated the implementation of Semantic Role Labeller (SRL),
named-entity recognizer, and parser. As far as we know,
there have been no reports as this being applied to a textual
entailment task.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the overview of our systems. In Section 3,
we describe the linguistic and shallow preprocessing step for
preparing indispensable data for graph matching, while in
Section 4 we describe the determination step of graph match-
ing. Our experimental results are presented in Section5. We
conclude in Section 5.

2. OVERVIEWS

Review of Graph Matching Model. As is similar with
Haghighi et al. [19], we represent text of T and H as a
graph in the following way. First, T and H are repre-
sented as a dependency tree using the modified version of
Collins’ head propagation rules [10], i.e. main verbs are
placed at the head of sentences. Second, the dependency
nodes such as collocations and named-entities are collapsed.
Note that collocations include verbs and their adjacent par-
ticles. Third, certain dependencies such as modifying prepo-
sitions are folded. Fourth, the graph representation is aug-
mented by Propbank-style semantic roles. Each predicate
adds an arc labeled with the appropriate semantic role to
the head of the argument phrase. Modifying phrases are
labeled with their semantic types.

The summary of the graph matching model introduced by
Haghighi et al. [19] is as follows. Let H denote hypothesis
graph, T denote a text graph, M denote a mapping from
the vertices of H to those of T , M(v) denote the match in
T for vertex v in H , and Cost(M) be the cost of matching
M . When M is a set of matching, the cost of matching H
to T is defined as in (1):

MatchCost(H,T) = min
M∈M

Cost(M) (1)

where Cost(M) is given by a convex mixture of the node
and relational match costs as in (2):

Cost(M) = αNodeCost(M) + (1− α)RelCost(M) (2)

where NodeCost(M) denotes a node cost, and RelCost(M)
denotes relational match cost. Let NodeSub(v,M(v)) be a
model for substituting node v for M(v). Then, node cost is
represented as in (3):

NodeCost(M) =
1

Z

∑
v∈Hv

w(v)NodeSub(v,M(v)) (3)

where w(v) denotes the weight for node v, and Z (=
∑

v∈Hv
w(v))

denotes a normalization constant. Similarly, let PathSub(e, ϕM (e))
be a model for assessing the cost of substituting a direct re-
lation e for ϕM (e) under the matching. Relation cost is
represented as in (4):

RelCost(M) =
1

Z

∑
v∈Hv

w(e)PathSub(e, ϕM (e)) (4)

where w(e) denotes a edge cost, and Z (=
∑

v∈Hv
w(e)) de-

notes a normalization constant. In sum, this model yields
T entails H when MatchCost(H,T ) is low, and otherwise T
does not entail H.

Our Model. Now in our model, we introduce the locality
to the graph matching algorithm. Let Tj be subgraph of T
and Hi be subgraph of H. For example, when T consists
of multiples of sentences, Tj may be a simple sentence. Let
Hi ≈ Tj denote that Hi is close enough to Tj . Avoiding
to assess the cost globally, we decompose Cost(H,T,M(i,j))
with a set of LocalCost(Hi, Tj ,M(i,j)) where each decom-
posed subgraph which includes a close pair of Hi and Tj

which satisfies Hi ≈ Tj . Hence, the modified version of the
MatchCost(H,T) can be written as in (6):

MatchCost(H,T) = min
M∈M

Cost(H,T,M(i,j)) (5)

Cost(H,T,M(i,j)) =
∑

Hi≈Tj

LocalCost(Hi, Tj ,M(i,j))(6)

Note that this Hi ≈ Tj corresponds to the principle of the
just noticeable difference in psychology [15]. Although this
indicates that for given T and H it may not be possible to
find out such (a set of) Hi and a set of Tj . Other note is that
if Hi only refers a subset of T , it may not need to consider
other part of T . This means that we may not need to iterate
all of subset of T to compare Hi. This also means that we
treat this as if a set of Hi and Ti is almost mutual exclusive
and only a couple of pairs of Hi and Ti are active in practice.

Deep / Shallow Linguistic Preprocessing Step. As is
written in Haghighi et al. [19], the node and edge substitu-
tion models uses some linguistic preprocessing such as Part-
Of-Speech (POS) tagger, Latent Semantic Analysis (LSA),
Wordnet, stemmer, and so forth. In our view, the informa-
tion obtained by those linguistic preprocessing are fairly lim-
ited and basically passive processing. We extend this and ac-
tively prepare the presumably indispensable information to
calculate a correct MatchCost(H,T). In this reason, we call
this active learning. The elements of active learning is other
than the conventional linguistic methods: parsing, morpho-
logical analysis, noun phrase extraction (and named-entity
extraction), and so forth. We do determination of unknown
noun phrases and unknown named-entities, rhetoric detec-
tion, relation extraction, text understanding, paraphrasing,
time / space coreference resolution. Especially, text under-
standing is to actively examine the elements in text and infer
using a simple logic. We also training of context-dependent
language models.

Based on these preprocessing steps, T and H will have vari-
ous semantic annotations with the representation as depen-
dency graphs. One more processing is subject alignment
and transformation: first, the subject in H is aligned to the
phrase Ts in the partial fragment in T . If Ts is not the



subject in the original T , T is transformed with Ts as the
subject. For example, suppose that we are given the follow-
ing T and H:

• T: 自激漏（じげきろう）は、1434 年に中世李氏朝鮮の
科学者、蒋英実が作った水時計である。

• H: 蒋英実は中世李氏朝鮮の科学者である。

In this case, the subject alignment connects ‘蒋英実’ in H
with ‘蒋英実’ in T . Then, the transformation yields the
graph containing several subtrees. If we extract such sub-
trees, this becomes the following four subtrees in T .

• T1: <person>蒋英実</person>は、<job>科学者</job>
である。

• T2: <person>蒋英実</person>は、<country>中世李
氏朝鮮</country>の<job>科学者</job>である。

• T3: <person>蒋英実</person>は、<time>1434年</time>
に<object>水時計</object>を作った。

• T4: coordination [<phrase>自激漏</phrase>, <phrase>
じげきろう</phrase>]

• H:<person topic=’Y’>蒋英実</person>は<country>
中世李氏朝鮮</country>の<job>科学者</job>である。

Hence, the graph matching algorithm eventually calculates
the cost mostly between H and T2.

3. DEEP / SHALLOW LINGUISTIC PREPRO-
CESSING STEP

The deep / shallow linguistic preprocessing step modifies
the original structures of H and T in order to provide Hi

and Tj which are subset of H and T with corresponding
features in the classification step. Using the equation (5)
and (6), our algorithm makes the size of the source and the
target sentences shrinked in order that we can compare the
Hi and Tj where Hi and Tj are close enough and where
other LocalCost(Hi,Tj ,M(i,j)) can be considered to be zero
(although this is not always the case). In this process, the
structure of texts are actively investigated in two directions:
(1) make T from complex / compound sentences into simple
sentences and (2) make the form of T simplified with consid-
ering the easier match withH. At the same time, the feature
extraction are actively proceeded in order to help the simpli-
fication of T . We call this mechanism as active learning since
the features used in the standard SVM are not modified but
are globally evaluated. Note that although it is often the
case that active learning let increase the training data, the
active learning here let decrease the substructure of training
data and let extract the features according to this dynam-
ical substructure. The conversion of subjects relations (or
subject alignment) of Ti towards Hi is done in this process,
as well as replacement of unknown words / named-entities,
text understanding and other linguistic preprocessing which
are enumerated in this chapter. In the experiments, we used
various deep / shallow linguistic preprocessing tools as well
as resources, which are shown below.

• Morphological analyzer: JUMAN [22].

• Dependency parser: KNP [21].

• Named-entity recognizer, NLTK [5], MALLET [24].

• Paraphrase generator [9]; ngram-Hidden Markov Model
(HMM) language model [6]; bootstrap method (“X de-
ploy Y”).

• Wordnet [7], Wiki, monolingual corpora, and parallel
corpora.

• Internet search engine: Google; Yahoo.

• Deep learning component: context-dependent recur-
rent neural network language model [25], ngram-HMM
language model [6];

Unknown Words (OOV Words). In textual entailment task,
it is expected that unknown words or out-of-vocabulary words
(OOV words) have negative effects whatever the steps are.
When the system encounters unexpected POS sequences or
doubtful sequences, based on the heuristic to derive candi-
date phrases based on the knowledge of case particles, our
system searches the Internet resources and obtain the (rank
1 to rank 100) results. We use the heuristic that it is often
possible to segment phrases by the knowledge of Japanese
case particles and that of other segments which are more
certain. If the results include titles, it is often likely that
the candidate phrase is identified. We make a correction of
the phrase boundaries. (Upon recognizing a mistake, we run
again the morphological analyzer and parser with replacing
some easier candidates and later replace back.)

Unknown Named Entities (Multi-Word Expressions). The
unknown named-entities of the proper nouns, such as per-
son name, company names, and titles, may also considerably
decrease the overall performance of the system. We use the
similar heuristic as unknown words to find a possibly cor-
rect named entities (Multi-Word Expressions). Note that
name can be written in various ways. For example, Leonald
Da Vinci is equivalent with “Da Vinci”, “Mr. Leonald Da
Vince”, “Leonald”, and so forth.

Parenthesis and Quotation. There are several different
meanings of parenthesis and quotation. It is expected that
the text within parenthesis are equivalent expression of the
items before the parenthesis. Such symbols include “『』”, “
（）”, “「」”, “”’, ”“ “, and so forth. Sometimes the (syntac-
tic) adjuncts are also better to be considered as one named-
entity. For example, “第 8回『このミステリーがすごい!』大賞”
can be considered as one entity rather than only considering
“『このミステリーがすごい!』”.

• Equivalent expression:

– 1993年 (平成 5年), 世界保健機関 (WHO)

• Explanation:

– ラフテー（東坡肉が元祖）

• More specific / generic explanation:

– 携帯の一般的な入力方法（トグル打ち・マルチタップ）

• Explanation of attribute (birthday, organization, and
so forth):



– ロバート・エドワード・ターナー三世（1938年 11
月 19日 -）

• Specification of segmentation:

– 後に、『新世紀エヴァンゲリオン』における「Project
EVA」

Noisy Characters. The text between parentheses and quotes
may include noisy characters. For example, “第 8回『このミ
ステリーがすごい!』大賞” includes “!”. “略称”, “例：”, “「」”,
and so forth.

• “『』”, “!”, “-”.

– 第 8回『このミステリーがすごい!』大賞

• “略称”

– 独立行政法人情報処理推進機構（じょうほうしょりす
いしんきこう、Information-technology Promotion
Agency Japan、略称「IPA」）

Hypergraph Representation of T . We identify the depen-
dency structure of T and H by dependency parser. We for-
mulate a hypergraph. For example, T can be decomposed
into several sentences {T1, . . . , Tn}, which is shown in the
following example.

• T :せたまるは、Suicaと同じく非接触式 ICカード通信技
術 FeliCaを採用しているが、カード端の切欠きはなく、
ICチップ内のファイル構造も Suicaとは一部異なる。

• T1: せたまるは、Suicaと同じく非接触式 ICカード通信
技術 FeliCaを採用している。

– T11: (せたまるは、非接触式 ICカード通信技術 Fe-
liCaを採用している。)

– T12: (Suicaは、非接触式 ICカード通信技術 FeliCa
を採用している。)

• T2: せたまるは、カード端の切欠きはない。

• T3: せたまるは、ICチップ内のファイル構造も Suicaと
は一部異なる。

Note that T1 is further decomposed into T11 and T12.

Subject Alignment. The subject can be freely modified ac-
cording with H. In the following examples, the focus of H
is on ’ナチス・ドイツ’ and its counter part ’ポーランド’. T
is decomposed according to this information: that is, (1) ’
ナチス・ドイツ’は、’ポーランド’に侵略した, (2) ’ナチス・ド
イツ’は、’ポーランド’をホロコーストの舞台とした, and (3)
ナチス・ドイツとポーランドとの間では、共同研究が進んでい
なかった.

• T:ナチス・ドイツが侵略し、ホロコーストの主な舞台に
なったポーランドとの間では、東西冷戦の影響で共同研
究が進んでいなかった。

• H:ナチス・ドイツはポーランドに侵略した。

Coordination. At the same time when we derive a hyper-
graph, we obtained the relation of coordination if there is.

1. T ′: 天才といえば古くはレオナルド・ダ・ヴィンチ、近代
に入ってはエジソンとアインシュタインと決まっている。

2. coordination: レオナルド・ダ・ヴィンチ, エジソン, ア
インシュタイン

Coreference Resolution / Identification of Nonanaphoric
NPs. In coreference resolution, the non-anaphoric definite
NPs [2] are often given, but in our context they should be
identified in its preparation. This should be also true for
relative pronouns, reflexive pronouns, personal pronouns as
well. Note that since there is no article in Japanese we have
no distinction between whether definite NPs and nondefinite
NPs. We identify the nonanaphoric NPs.

Coreference Resolution of Space / Time References. We
employ the space and time coreference resolution to identify
the fluctuation of space and time expressions.

Text Understanding. A graph-matching-based textual en-
tailment [19, 23] has limitation in that they will not detect
whether T requires to understand the content of H. Sup-
pose that T=’Bob bought a red car from Mary and Tom.’
and H=’Three persons are related to the conversation’. In
T , there is no number appeared, but human beings can read
this sentence and understand that there are three persons
in T . Slightly more difficult example, such as follows, is
appeared in development set.

• T:世界の地震の約１割が日本周辺で起きていて、マグニ
チュード８を超える巨大地震も２割近くが日本周辺で起
きているという。

• H:マグニチュード８を超える巨大地震の約１割が日本周
辺で起きている。

In this example, RTE system needs a simple calculation. ’日
本周辺の地震’は約１割, ’マグニチュード８を超える地震’は２
割. Hence, the superposition of ’マグニチュード８を超える巨
大地震’ and ’日本周辺の地震’ is約 0.2割 by subtracting２割-
約１割. The system should have the capability of understand
the sentence and calculate in this way.

Note that our system only supports very simple operations
by first-order logic since it is very difficult to simulate whole
the capability of human beings. We categorize (1) time de-
scription (“when”), (2) location description (“where”), (3)
who description (“who”), (4) what description (“what” or
“which”), (5) size description (“how” followed by an adjec-
tive), (6) number description (“how many”), and (7) why
description (“why”). Note that although there is no ques-
tion sentence in corpus of textual entailment it would be
possible that we assume that a hypothesis sentences can be
categorize one of these which answers to the question which
is hidden behind the scene.

Text Understanding Time Inference. It is often that the
time description may need to deal with the time information
given in T. The following example needs to understand that
a week after 31/May/2012 means 6/June/2012 and hence
2/June/2012 is before this date.



• T: The explosion was happened on 31/May/2012 and
it made the airplane delayed for a week.

• H: The airplane on 2/June/2012 was not delayed.

Text Understanding Location Inference. Similarly, loca-
tion description may need to deal with the location informa-
tion given in T. In the following example, in order to judge
the entailment of this example, it is required to understand
simple location knowledge: ’Japan’ ⊆ ’World’.

• T: There are thousands of earthquake in the world.

• H: The number of earthquake in Japan is less than
thousands.

Slightly different setting is in scene understanding. In this
example, in order to judge the entailment of this example,
it is required to understand the location of each object in
space: hence, a dog is behind a big building, implicating
that a dog is not visible from Tom.

• T: There is a big building in front of Tom and there is
a dog behind the building.

• H: Tom cannot see a dog.

Text Understanding Number Inference. In the following,
it is required to count there are 3 persons appeared in a
sentence. In order to do this, it is required a function which
counts how many person exist in a sentence.

• T: 天才といえば古くはレオナルド・ダ・ヴィンチ、近代
に入ってはエジソンとアインシュタインと決まっている。

• coordination: レオナルド・ダ・ヴィンチ, エジソン, ア
インシュタイン

Hypernym and Antonym. This example is an usual situ-
ation for many literature. In a word level, if there is some
difference in terms of the level of abstraction in two words,
i.e. 中高年 and 中高生, it is required to judge whether 中高
年 is a hypernym of 中高生 or these two does not have such
relationships. Such relationships in word can be judge using
lexical resources such as (Japanese) WordNet [7].

Quantifier Detection. In English sentence, a quantifier,
such as ’all’ and ’every’, needs to be examined in order to
grasp the correct meaning. These are detected by the pre-
defined vocabularies.

• 刑事訴訟では疑わしきは罰せずという推定無罪が原則で
あるため、保険金殺人の事件が殺人罪として有罪になら
ないこともある。

Rhetoric Detection. If the sentence includes rhetoric, such
as metaphor, prosopopoeia, and the idiomatic expression
such as the four-word Kanji (i.e. “温故知新” and“南船北馬”),
this may prevent the similarity-based matching approach. It

is often that the title becomes rhetoric, such as in the case of
“『Hey Heyおおきに毎度あり』”, in the sense that even if the
meaning in the title matches with the surrounding meaning,
it does not mean that T entails H. The text within “『』”
should be considered to be a different layer of meaning.

• 『Hey Hey おおきに毎度あり』は，タイトルが表すよう
に、歌詞は全編関西弁で描かれ、メロディ部分はほぼ台
詞であったりという変わった作風である。ト・ト」（全軍
突撃せよ）及び「トラトラトラ」（奇襲ニ成功セリ）が淵
田中佐機から打電されたことで知られる。

4. DETERMINATION STEP
The determination step judges the similarity of the Ti and
Hi by the SVM classification [8, 12] where Ti and Hi are the
possible correspondent fragments. As is mentioned above,
the feature extraction for the SVM classification algorithm
are applied for the selected Hi and Tj . We used L1-loss
function with Radial Basis Function (RBF) kernel where C
and γ were determined by cross-validation. Major features
which we used in our system are described below.

Lexical Entailment / Hyponymy Relations / Antonymy
Relations / Location Relations / Adjective Gradation
Features. These features are the same as [14] and [23].
Note that depending on the deep / shallow linguistic pre-
processing, hyponymy relations and antonymy relations are
exchanged.

Modality / Polarity / Factivity Features. These features
capture the contexts which reverse or block monotonicity
[23] where these are often marked by the presence or ab-
sence of linguistic markers. Modality feature capture modal
reasoning where possibility will not entail actuality. Factiv-
ity feature

Adjunct Feature. This feature suggests the dropping or
adding of syntactic adjuncts moving from T to H [23].

Quantifier Features. These features captures entailment
relations among sentences involving quantification [23].

Semantic Role Matching Feature. This feature indicates
whether the corresponding semantic role relations are equiv-
alent or not. As with this feature, some pair of features are
preprocessed to give true or false beforehand.

Parenthesis and Quotation Features. These features in-
dicate the presence or absence of possible equivalent expres-
sions. This enables the similarity matching with the expres-
sion among parenthesis and quotation.

Noisy Character / Rhetoric Feature. These features sug-
gest to drop the corresponding fragments from the similarity
matching.

Time / Date / Number Features. The presence of these
features can be preprocessed by coreference resolution of
space / time references (or some localization software) which
will detect different form of equivalent expressions. These
features are often preprocessed beforehand whether they are
true of false.



Text Understanding Features. Classification can only cap-
ture the similar expressions between Ti and Hj . As is men-
tioned in Chapter 3, when Hj requests some capability of
text understanding of Ti, this feature would suggest some
basic inference results in the deep / shallow linguistic pre-
processing. This enables a judge whether Ti can be entailed
Hj . Note that the capability of these features are limited in
time, location, and number and in very basic case.

Content Length Feature. If H contains more information
than T , this can be immediately decided that T does not
entail to H.

Deep Learning Language Model Feature. Context- de-
pendent language model feature is derived by context-dependent
recurrent neural network language model [25] and ngram-
HMM language model [6].

Genre ID Feature. Genre ID feature is derived by Latent
Dirichlet Allocation (LDA) [24].

5. EXPERIMENTAL SETTINGS AND RE-
SULTS

The statistics of development and test set for textual entail
BC task is shown in 5. The result by our approach is shown
in Table 5. The Macro F1 score was 80.49. The precision
for yes entailment was high, while the recall for no entail
was high. As is indicated by the row of our submission, our
textual entailment system gave output of ’yes’ with much
smaller number than the correct answer, while it gave output
of ’no’ in larger number.

Yes No Total

JA devset 240 371 611
JA testset 256 354 610

Our submission 206 404 610

DCUMT

MacroF1 80.49
Accuracy 81.64
Y-F1 75.76 N-F1 85.22
Y-Prec 84.95 N-Prec 79.95
Y-Rec 68.36 N-Rec 91.24

6. CONCLUSION
We participated in textual entailment task for NTCIR-10.
Our system is a variant of graph matching-based system
with additional capability of reducing the unknown words
and unknown named-entities, incorporating meaning in paren-
theses / rhetorical expressions / semantic roles, understand-
ing of simple logic. We used an additional feature of lan-
guage model from deep learning. Our result was 80.49 for
macro F1 score, 84.95 for precision for the positive entail-
ment, and 79.95 for recall for negative entailment. The rea-
son for high precision for the positive entailment may be
due to the fact that we tried to determine the entailment
only when the distance between T ′ and H becomes small
depending on deep / shallow linguistic preprocessing and
determination.

There are several avenues for further work. First, we applied
Japanese textual entailment. We would like to extend this

to English textual entailment as well as cross-lingual textual
entailment. Although the direct application would be the
evaluation task in SMT, it is possible to apply this technique
to SMT components such as word alignment task [27, 31, 30]
and decoding task [34, 35]. This would lead to the (deep)
semantically informed SMT. Second, we would like to use
the testset which has not much unknown words in order
to specify the effect of deep learning architecture although
our usage is limited in paraphrasing which is similar to [28,
29] which applied to system combination task [35]. This
way of building SMT components is related to unsupervised
learning of sentence or language model [37]. This line of
research would lead to the (shallow) semantically informed
SMT [28, 32, 33].
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Appendix: Ngram-HMM Language Model

Generative model. Figure 1 depicted an example of ngram-
HMM language model [6] in blue (in the center): Hidden
Markov Model (HMM) [36, 17, 1] of size K emits n-gram
word sequence wi, . . . , wi−K+1 where hi, . . . , hi−K+1 denote
corresponding hidden states, while the arcs from wi−3 to wi,
· · · , wi−1 to wi show the backoff relations appeared in lan-
guage model smoothing, such as Kneser-Ney smoothing [20]
and hierarchical Pitman-Yor LM smoothing [39].
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Figure 1: Figure shows the 4-gram HMM language
model and generative model.

In the left side in Figure 1, we place one Dirichlet Process
prior DP(α,H), with concentration parameter α and base
measure H, for the transition probabilities going out from
each hidden state. This construction is borrowed from the
infinite HMM [1, 16]. The observation likelihood for the
hidden word ht are parameterized as in wt|ht ∼ F (ϕst) since
the hidden variables of HMM is limited in its representation
power. This is since the observations can be regarded as
being generated from a dynamic mixture model [16] as in (7),
the Dirichlet priors on the rows have a shared parameter.

p(wi|hi−1 = k) =

K∑
hi=1

p(hi|hi−1 = k)p(wi|hi)

=

K∑
hi=1

πk,hip(wi|ϕhi) (7)

In the right side in Figure 1, we place Pitman-Yor prior PY:

wi|w1:i−1 ∼ PY(di, θi, Gi) (8)

where α is a concentration parameter, θ is a strength pa-
rameter, and Gi is a base measure. This construction is
borrowed from hierarchical Pitman-Yor language model [39].

Inference. We compute the expected value of the poste-
rior distribution of the hidden variables with a beam search
[16]. This blocked Gibbs sampler samples the parameters
(transition matrix, output parameters), the state sequence,
hyper-parameters, and the parameters related to language
model smoothing, turn in turn. As is mentioned in [16], this
sampler has characteristic in that it adaptively truncates the
state space and run dynamic programming as in (9):

p(ht|w1:t, u1:t) = p(wt|ht)∑
ht−1:ut<π

(ht−1,ht)

p(ht−1|w1:t−1, u1:t−1) (9)

where ut is only valid if this is smaller than the transi-
tion probabilities of the hidden word sequence h1, . . . , hK .
Note that we use an auxiliary variable ui which samples
for each word in the sequence from the distribution ui ∼
Uniform(0, π(hi−1,hi)). The implementation of the beam
sampler consists of preprocessing the transition matrix π
and sorting its elements in descending order.

Initialization. First, we obtain the parameters for hierar-
chical Pitman-Yor process-based language model [39, 18].

Second, in order to obtain a better initialization value h for
the above inference, we perform the following EM algorithm
instead of giving the distribution of h randomly. This EM
algorithm incorporates the above mentioned truncation [16].
expected value of the posterior distribution of the hidden
variables. For every position hi, we send a forward message
α(hi−n+1:i−1) in a single path from the start to the end of
the chain (which is the standard forward recursion in HMM).
Here we normalize the sum of α considering the truncated
variables ui−n+1:i−1.

α(hi−n+2:i) =

∑
α(hi−n+1:i−1)∑
α(ui−n+1:i−1)

P (wi|hi)
∑

α(ui−n+1:i−1)P (hi|hi−n+1:i−1)

Then, for every position hj , we send a message β(hi−n+2:i, hj)
in multiple paths from the start to the end of the chain as
in (10),

β(hi−n+2:i, hj) =

∑
α(hi−n+1:i−1)∑
α(ui−n+1:i−1)

P (wi|hi)∑
β(hi−n+1:i−1, hj)P (hi|hi−n+1:i−1)

This step aims at obtaining the expected value of the pos-
terior distribution. In the M-step, using this expected value
of the posterior distribution obtained in the E-step to eval-
uate the expectation of the logarithm of the complete-data
likelihood.


