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ABSTRACT

This paper gives the system description of the domain adaptation team of Dublin City Univer-

sity for our participation in the system combination task in the Second Workshop on Applying

Machine Learning Techniques to Optimise the Division of Labour in Hybrid MT (ML4HMT-12).

We used the results of unsupervised document classification as meta information to the system

combination module. For the Spanish-English data, our strategy achieved 26.33 BLEU points,

0.33 BLEU points absolute improvement over the standard confusion-network-based system

combination. This was the best score in terms of BLEU among six participants in ML4HMT-12.
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1 Introduction

This paper describes a new extension to our system combination module developed in Dublin

City University (Du and Way, 2010a,b; Okita and van Genabith, 2012). We have added a do-

main adaptation technique (Foster and Kuhn, 2007; Koehn and Schroeder, 2007; Daumé III,

2007) to our system combination module and tested it in the system combination task at the

ML4HMT-2012 workshop.

The study of translation outputs obtained by systems trained on out-of-domain training data

has contributed to the advance of domain adaptation techniques for statistical machine

translation (SMT) (Foster and Kuhn, 2007; Koehn and Schroeder, 2007; Daumé III, 2007;

Pecina et al., 2012). The literature shows that the performance gain obtained by using in-

domain data (compared to out-of-domain data) is, in most cases, rather significant. Although

it is often the case in the SMT literature that genre classification is done in a supervised setting

(Jiang et al., 2012), analogous to genre-specific dictionaries in rule-based machine translation

(RBMT) systems, a cache-based approach (Tiedemann, 2010) further investigates this on a

fine-grained level of context, which does not need the notion of genre. Therefore, one idea

worth exploring is to employ unsupervised document classification to cluster the documents

(Blei et al., 2003; Steyvers and Griffiths, 2007; Blei, 2011; Sontag and Roy, 2011; Murphy,

2012).

In the context of system combination, the effect of out-of-domain training data is slightly dif-

ferent. Unlike the training of SMT systems, system combination essentially handles only the

translation outputs, which can be considered to be in-domain. However, if we consider a train-

ing procedure which takes two steps (Du and Way, 2010a; Okita and van Genabith, 2012),

these two steps are possible candidates that have a connection with the out-of-domain data.

This two step approach to system combination tunes parameters in the first step over the de-

velopment set and subsequently produces a final translation combining fragments obtained by

translating the test set with different MT systems using such parameters.

Apart from this line of motivation, a number of times we have encountered obstacles to de-

ploy a system combination module whose origin is difficult to trace. Although the system

combination strategy works effectively in most cases, with some particular datasets we have

experienced difficulties trying to achieve better performance than the single best system. Such

cases include the ZH–EN translation task (Ma et al., 2009) and the EN–FR direction in the

system combination task at WMT091.

In order to investigate this issue, we need to hypothesise what the cause might be. The super

confusion network approach of Du and Way (2010a) assumed that the cause was related to

the alignment metric. The strategy was then to incorporate not only one alignment metric

but multiple metrics. The current paper hypothesises that the genre of the test and tuning

sets exhibit variance, hence out-of-domain effects, and that this causes some variance in the

performance of each MT system. If this is indeed the case, as is our assumption, the two

methods explored in this paper should be effective: to identify and remove the out-of-domain

data from the tuning set and to train on in-domain partitioned data.

The remainder of this paper is organized as follows. Section 2 describes our algorithm. In

Section 3, our experimental results are presented. We conclude in Section 4.

1http://www.statmt.org/wmt09

http://www.statmt.org/wmt09


2 Our Algorithm

Our algorithm consists of the following two steps in Algorithm 1.

Algorithm 1 Our Algorithm

Step 1: Run the out-of-domain data cleaning.

Step 2: Run the in-domain data partitioning.

This algorithm applies unsupervised document classification on the source side. The classifica-

tion results of the source side are naturally linked to the target side since any parallel corpus

forms translation pairs. Obviously another possibility would be to apply the unsupervised

document classification jointly both of the source and the target sides.

The details of these two steps are explained in the following subsections.

2.1 Unsupervised Document Classification by Topic Model

We used Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Steyvers and Griffiths, 2007; Blei,

2011; Sontag and Roy, 2011; Murphy, 2012) to perform the (unsupervised) classification. LDA

represents topics as multinomial distributions over the W unique word-types in the corpus and

represents documents as a mixture of topics.

Let C be the number of unique labels in the corpus. Each label c is represented by a W -

dimensional multinomial distribution φc over the vocabulary. For document d, we observe

both the words in the document w(d) as well as the document labels c(d). Given the distribution

over topics θd , the generation of words in the document is captured by the following generative

model.

1. For each label c ∈ {1, . . . C}, sample a distribution over word-types φc ∼ Dirichlet(·|β)

2. For each document d ∈ {1, . . . , D}

(a) Sample a distribution over its observed labels θd ∼ Dirichlet(·|α)

(b) For each word i ∈ {1, . . . , NW
d
}

i. Sample a label z
(d)

i
∼Multinomial(θd)

ii. Sample a word w
(d)

i
∼Multinomial(φc) from the label c = z

(d)

i

The LDA model is represented as a graphical model in Figure 1. There are three levels in this

figure: the corpus level, the document level and the within document level. The parameters α

and β relate to the corpus level, the variables θd belong to the document level, and finally the

variables zdn and wdn correspond to the word level, which are sampled once for each word in

each document.

2.1.1 Out-of-domain Data Cleaning

Using topic modeling (or LDA) as described above, we propose to clean out-of-domain data

from the tuning set as follows:
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Figure 1: Figure shows the graphical model of LDA.

1. Fix the number of clusters C: choose a relatively big C .2

2. Do unsupervised document classification (or LDA) on the source side of the tuning and

test sets.

3. Detect the classes that contain only data from the tuning set.

4. Discard the corresponding sentence pairs from the tuning set.

2.1.2 In-domain Data Partitioning

Using topic modeling (or LDA) as described above, we propose to perform in-domain data

partitioning as follows:

1. Fix the number of clusters C , we explore values from small to big.3

2. Do unsupervised document classification (or LDA) on the source side of the tuning and

test sets.

3. Separate each class of tuning and test sets (keep the original index and new index in the

allocated separated dataset).

4. Run system combination on each class.

5. Reconstruct the system combined results of each class preserving the original index.

2C decides the size of clusters. In our case, 3,003 sentences will be clustered. If C = 2, the result cluster size will

be 1,500 and we suggest this value of C is slightly too small. If C = 3, 000, the result cluster size will be 1 and we

suggest C is slightly too big. In this case, C = 500− 1, 000 would be the range considered and refereed as “relatively

big”.
3Currently, we do not have a definite recommendation on this. It needs to be studied more deeply.



2.2 System Combination

The first step of system combination is to select a backbone by MBR decoding. Let E be the

target language, F be the source language, and M(·) be an MT system which maps some

sequence in the source language F into some sequence in the target language E. Let E be

the translation outputs of all the participating MT systems. Given a loss function L(E, E′)

between an automatic translation E′ and the reference E, a set of translation outputs E , and

an underlying probability model P(E|F), a MBR decoder is defined as in (1) (Kumar and Byrne,

2002):

Ê = arg min
E′∈E

R(E′) = argmin
E′∈E

∑

E′∈E

L(E, E′)P(E|F) (1)

where R(E′) denotes the Bayes risk of candidate translation E′ under the loss function L. We

use BLEU (Papineni et al., 2002) as this loss function L. According to this selected backbone,

other translation outputs are aligned to form a confusion network.

The second step is by the (monotonic) consensus decoding for the given confusion network.

There are two cases when this consensus decoding is executed: one is with references (tuning

phase) and one is without references (test phase). Let E j,n be the nth best confusion network

hypothesis and F j be the jth source sentence. The hypothesis confidence (Rosti et al., 2007) is

given as follows:

log p(E j,n/F j) =

N j−1∑

i=1

log(

NS∑

l=1

λl p(w|l, i)) + ν L(E j,n) +µNnulls(E j,n) + ξNwords(E j,n) (2)

where ν is the language model weight, L(E j,n) is the LM log-probability and Nwords(E j,n) is

the number of words in the hypothesis E j,n. In the tuning phase, the parameters in Equation

(2) are tuned. Then, using these tuned parameters, the test phase will be carried out. In this

respect, the partitioning of in-domain data is very important. If we partition the in-domain

data, the partitioned data will be guaranteed to be in-domain data (if we partition the data in

general, the partitioned data will not be guaranteed to be in-domain tuning data).

3 Experimental Results

ML4HMT-2012 provides four translation outputs (s1 to s4) which are MT output by two RBMT

systems, APERTIUM and LUCY, PB-SMT (MOSES) and HPB-SMT (MOSES), respectively. The tun-

ing data consists of 20,000 sentence pairs, while the test data consists of 3,003 sentence pairs.

class 1 20000 3003

class 2 10213 9787 1821 1182

class 3 6752 6428 6820 838 962 1203

class 4 4461 4766 5954 4819 785 432 776 1010

class 5 3846 3669 3665 3978 4842 542 343 1311 404 403

Table 1: Unsupervised document classification by a fixed number of clusters. Each column

shows the number of items classified in each class.

Our experimental setting is as follows. We use our system combination module (Du and Way,

2010a,b; Okita and van Genabith, 2012), which has its own language modeling tool, MERT

process, and MBR decoding. We use the BLEU metric as loss function in MBR decoding. We



NIST BLEU METEOR WER PER

cleaned 7.4945 0.2500 0.5499287 56.6991 42.3032

wo cleaning 7.6846 0.2600 0.5643944 56.2368 41.5399

Table 2: The results of out-of-domain data cleaning compared with without cleaning.

use TERP
4 as alignment metrics in monolingual word alignment.5 We use MALLET

6 for topic

modeling. Although topic modeling is often used to obtain unsupervised clustering, our inter-

est is focused on unsupervised classification of documents.

Given a specified number of classes C , we run MALLET to train the model on the tuning set. In

this process, we obtained the label distribution for each document. Then, we infer the class

using the trained model which yields the label distribution for each document. Results are

shown in Table 1.

NIST BLEU METEOR WER PER

s1 6.7456 0.2016 0.5712806 67.2881 54.7614

s2 7.3982 0.2388 0.6195136 63.9684 51.6444

s3 9.4167 0.3400 0.6650655 49.9341 37.4271

s4 9.1167 0.3273 0.6744035 52.0578 38.9179

topic modeling (devset)

2 class 9.3504 0.3292 0.6529581 50.2061 36.8001

3 class 9.3045 0.3268 0.6522747 50.7730 37.4164

4 class 9.3084 0.3267 0.6513981 50.7391 37.3968

5 class 9.3950 0.3302 0.6531211 50.1131 36.7148

system combination

syscom 9.2912 0.3268 0.6531500 50.7681 37.2779

Table 3: Table shows the performance of translation outputs s1 to s4 and results of system

combination on development set.

Table 2 shows the performance on standard system combination, with and without data clean-

ing. In this out-of-domain data cleaning, we removed 2,207 sentences (11.0%) from the tuning

data. The remaining 17,793 sentences are considered to be in-domain data from the point of

view of the test set. However, this out-of-domain data cleaning did not quite work as expected.

Table 3 shows the performance on the development set. The performance of s1 and s2 is

radically lower than that of s3 and s4 across all evaluation metrics considered. Although it

may be that the performance of s1 and s2 is always inferior to that of the other systems, it may

also be that s1 and s2 do not work well for some particular genre (the results shown in Table

4 seem to corroborate this hypothesis, particularly for s2).

We also performed the in-domain partitioning with the out-of-domain tuning set and without

using the out-of-domain tuning set. Table 4 shows our results when we partitioned into 2, 3,

4, and 5 clusters.

The results show that 4 class classification achieved the best result, namely 26.33 BLEU points.

4http://www.cs.umd.edu/~snover/terp
5For example, Du and Way (2010a) explains various monolingual alignment methods such as TER alignment, HMM

alignment and IHMM alignment.
6http://mallet.cs.umass.edu/

http://www.cs.umd.edu/~snover/terp
http://mallet.cs.umass.edu/


This is an improvement of 0.33 BLEU points absolute over system combination without topic

modeling. Note that the baseline achieved 26.00 BLEU points, the best single system in terms

of BLEU was s4 which achieved 25.31 BLEU points, and the best single system in terms of

METEOR was s2 which achieved 0.5853.

NIST BLEU METEOR WER PER

s1 6.4996 0.2248 0.5458641 64.2452 49.9806

s2 6.9281 0.2500 0.5853446 62.9194 48.0065

s3 7.4022 0.2446 0.5544660 58.0752 44.0221

s4 7.2100 0.2531 0.5596933 59.3930 44.5230

topic modeling (testset)

2 class 7.7036 0.2620 0.5626187 55.8092 41.7783

3 class 7.7134 0.2628 0.5645200 55.8865 41.7171

4 class 7.7146 0.2633 0.5647685 55.8612 41.7264

5 class 7.6245 0.2592 0.5620755 56.9575 42.6229

system combination without topic modeling

syscom 7.6846 0.2600 0.5643944 56.2368 41.5399

Table 4: Table includes our results on testset (the row 4 to 7).

Conclusion and Perspectives

This paper deployed domain adaptation via unsupervised document clustering through topic

modeling and applied it to system combination. On the one hand, the out-of-domain data

cleaning lost 1 BLEU point compared to the results of standard system combination. On the

other hand, the in-domain data partitioning improved 1.02 BLEU points absolute compared to

the single best MT system, and improved 0.33 BLEU points absolute compared to the results

of the standard system combination approach.

Further studies will be carried out to explore this topic. First, this paper only handled the

partition size of at most 5. We would like to apply our method to a larger dataset. It is

also interesting to seek a method to find the optimal number of clusters automatically by

hierarchical clustering methods with non-parametric Baysian methods (Okita and Way, 2010,

2011a,b). Alternatively, we have an interest on the reason why the out-of-domain data cleaning

did not work in connection with noise if there is a link (Okita, 2009; Okita et al., 2010a,b;

Okita, 2012).

Second, although we described only the method that uses domain adaptation, we explored

also the correction of the output based on corresponding tokens and PoS tags from the source

and target sides (e.g. if a token in the source side is a singular noun and the corresponding

target token is a plural noun, overwrite that token by its singular form). This is related to

techniques we have explored for diagnostic evaluation using checkpoints (Naskar et al., 2011;

Toral et al., 2012) and a more detailed study is necessary to apply them in system combination.
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