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Abstract. This paper describes a new system combination strategy in
Statistical Machine Translation. Tromble et al. (2008) introduced the ev-
idence space into Minimum Bayes Risk decoding in order to quantify the
relative performance within lattice or n-best output with regard to the 1-
best output. In contrast, our approach is to enlarge the hypothesis space
in order to incorporate the combinatorial nature of MBR decoding. In
this setting, we perform experiments on three language pairs ES-EN, FR-
EN and JP-EN. For ES-EN JRC-Acquis our approach shows 0.50 BLEU
points absolute and 1.9% relative improvement obver the standard confu-
sion network-based system combination without hypothesis expansion,
and 2.16 BLEU points absolute and 9.2% relative improvement com-
pared to the single best system. For JP-EN NTCIR-8 the improvement
is 0.94 points absolute and 3.4% relative, and for FR-EN WMT09 0.30
points absolute and 1.3% relative compared to the single best system,
respectively.

1 Introduction

In a sequence prediction task, a max-product algorithm (or Viterbi decoding
[29]) is a standard technique to find an approximate solution x which maximizes
the joint distribution p(x) (while a sum-product algorithm [23] attempts to find
an exact solution x). Max-product is an inference algorithm for a single model in
a tree or a chain structure [13]. Suppose that we consider a combination of mul-
tiple systems whose model parameters are different. The first problem is that we
are required to calibrate the quantities coming from the different models since
these quantities are not immediately comparable in general. The second prob-
lem is that it is often the case that an increase in the number of participating
systems increases the overall computation in a non-linear way; fortunatley, how-
ever, it turns out that often a lot of calculations are redundant over systems at
the same time. In our particular situation, the number of nodes increases expo-
nentially since the corresponding nodes are searched in a combinatorial manner
(even though the overall number of system is small); however, there are a lot of
redundancies.

In order to address these problems, this paper imposes practical assumptions
limiting our scope but in such a way that our immediate application of Minimum
Bayes Risk decoding [14] does not suffer. 1 Our assumptions are that (i) the

1 Note that it is not clear what kind of other applications exist.



model structures are almost identical and that (ii) the probabilities which we
compare are indexed and thus can be calibrated locally. Under this assumption,
it turned out that we can employ a standard MAP assignment algorithm [13] to
calibrate the probabilities arising from different systems, even though the original
aim of normalization of MAP assignment is different in that the unnormalized
probabilities arise by themselves since MAP assignment partitions variables into
E(evidence), Q(query), and H(hidden) variables. Clique tree [24] is a technique
to consider only some factors locally, which can be applied here.

With these preparations, we develop a new system combination strategy us-
ing Minimum Bayes Risk (MBR) decoding [14] which exploits a larger hypothesis
space. A system combination strategy [2, 16, 6] is a state-of-the-art technique to
improve the overall BLEU score. Recently, Tromble et al. [28] attempted to ex-
ploit a larger evidence space by using a lattice structure. DeNero et al. [4, 5]
introduced n-gram expectation, while Arun et al. [1] compared MBR decoding
with MAP decoding for general translation tasks in a MERT setting [17].

The remainder of this paper is organized as follows. Section 2 reviews the
decoding algorithm in SMT. Section 3 describes our algorithm. In Section 4, our
experimental results are presented. We conclude in Section 5.

2 Decoding Algorithm in SMT

There are two popular decoding algorithms in phrase-based SMT: MAP decoding
and MBR decoding [10]. MAP decoding is the main appraoch in phrase-based
SMT [12], while MBR decoding is mainly used for system combination [2, 16,
6, 28, 4]. The MAP decoding algorithm seeks the most likely output sequence,
while the MBR decoding seeks the output sequence whose loss is the smallest.

Let E be the target language, F be the source language, A be an alignment
which represents the mapping from source to target phrases, and M(·) be an MT
system which maps some sequence in the source language F into some sequence
in the target language E. MAP decoding can be written as in (1):

ÊMAP
best = argmax

E

∑

A

P (E,A|F ) (1)

Let E be the translation outputs of all the MT systems. For a given reference
translation E, the decoder performance can be measured by the loss function
L(E,M(F )). Given such a loss function L(E,E′) between an automatic trans-
lation E′ and the reference E, a set of translation outputs E , and an underlying
probability model P (E|F ), a MBR decoder is defined as in (2) [14]:

ÊMBR
best = arg min

E′∈E
R(E′)

= arg min
E′∈EH

∑

E′∈EE

L(E,E′)P (E|F ) (2)

= arg max
E′∈EH

∑

E′∈EE

BLEUE(E
′)P (E|F ) (3)



where R(E′) denotes the Bayes risk of candidate translation E′ under the loss
function L, BLEUE(E’) [22] is a function to evaluate a hypothesis E′ according
to E, EH refers to the hypothesis space from which translations are chosen, EE
refers to the evidence space used for calculating risk. Note that a hypothesis
space EH and an evidence space EE appeared in [9, 28, 4, 1].

The confusion network-based approach [2, 16, 6] enables us to combine several
fragments from different MT outputs. In the first step, we select the sentence-
based best single system via a MBR decoder (or single system outputs are often
used as the backbone of the confusion network). Note that the backbone de-
termines the general word order of the confusion network. In the second step,
based on the backbone which is selected in the first step, we build the confusion
network by aligning the hypotheses with the backbone. In this process, we used
the TER distance [25] between the backbone and the hypotheses. We do this
for all the hypotheses sentence by sentence. Note that in this process, deleted
words are substituted as NULL words (or ǫ-arcs). In the third step, the con-
sensus translation is extracted as the best path in the confusion network. The
most primitive approach [16] is to select the best word êk by the word posterior
probability via voting at each position k in the confusion network, as in (4):

Êk = argmax
e∈E

pk(e|F ) (4)

Note that this word posterior probability can be used as a measure how confident
the model is about this particular word translation [10], as defined in (5):

pi(e|F ) =
∑

j

δ(e, ej,i)p(ej |F ) (5)

where ej,i denotes the i-th word and δ(e, ej,i) denotes the indicator function
which is 1 if the i-th word is e, otherwise 0. However, in practice as is shown by
[6, 15], the incorporation of a language model in this voting process will improve
the quality further. Hence, we use the following features in this voting process:
word posterior probability, 4-gram and 5-gram target language model, word
length penalty, and NULL word length penalty. Note that Minimum Error-Rate
Training (MERT) is used to tune the weights of the confusion network. In the
final step, we remove ǫ-arcs, if they exist.

3 Our Algorithm

Tromble et al. [28] introduced a lattice in the evidence space into Minimum
Bayes Risk decoding in order to quantify the relative performance within lattice
or n-best output with regard to the 1-best output. In contrast, our approach is to
enlarge the hypothesis space via different kinds of lattices in order to incorporate
the combinatorial nature of MBR decoding.

We first present the motivation for using the enlarged hypothesis space and
searching for the optimal subset E0 among this enlarged hypothesis space E



A MT prob 1-gram B MT prob 1-gram
outputs expectation outputs expectation

1 a a a c 0.30 EA(aaac)=1.2 1 a a a c 0.33 EB(aaac)=1.32
2 b b c d 0.20 EA(bbcd)=2.1 2 b b c d 0.22 EB(bbcd)=2.20

3 b b b d 0.20 EA(bbbd)=2.0 3 b b b d 0.22 EB(bbbd)=1.98
4 b b c f 0.20 EA(bbcf)=1.8 4 b b c f 0.22 EB(bbcf)=1.98
5 f f b d 0.10 EA(ffbd)=1.0 5 - - - - 0.00

Table 1. Motivating examples. MBR decoding can be schematically described as max-
imizing the n-gram expectations between the MT output sequence and some sequence,
as is described in this table. The left table shows the MT output sequences consisting
of 5 systems, while the right table shows the MT output sequences consisting of 4
systems. In this case, the 1-gram expectation of “bbcd” for 4 systems (right table) are
better than those for 5 systems (left table). This suggests that it may be better to
remove extremely bad MT output from the inputs of system combination.

01111 10111 11011 11101 11110

11111

00111 01011 01101 01110 10011 10101 10110 11001 11010 11100

00011 00101 00110 01001 01010 01100 10001 10010 1100010100

00001 00010 00100 01000 10000

0.2278 0.1814 0.1792 0.2329 0.2323 0.1870 0.1611 0.21230.2191 0.2109

0.2451 0.2390 0.2442 0.2400

0.2229 0.2315 0.2302 0.2183 0.2222 0.2119 0.2385 0.2448 0.2131

0.2505

0.2553

0.2498

0.1968 0.2337 0.1262 0.2230 0.2315

00000
0.0000

Fig. 1. Figure shows the lattice of five MT output sequences encoded as binary se-
quences (‘11111’, ‘01111’, etc) and BLEU scores (‘0.2505’, ‘0.2451’, etc) for ES-EN
JRC-Acquis (Refer Table 2). The top row shows the results using five MT output
sequences; the second row uses four MT output sequences; . . .; the fourth row uses
the individual BLEU scores; the bottom row does not use any MT output sequence
(Hence, BLEU score is zero). The observation from this lattice is that the resulting
BLEU score is not always between two BLEU scores of adjacent nodes; sometimes the
resulting BLEU score is lower than both of them (e.g. ‘00010’ and ‘10000’ resulted in
0.2109.) and it is higher than both of them (e.g. ‘00011’, ‘01001’ and ‘01010’ resulted
in 0.2498). The maximal value in the lattice is 0.2553 in the second row in this case.



(where E is the translation outputs of all the MT systems participating in the sys-
tem combination). The focus is on E of P (E|F ) in Eq (2) where E is a set of MT
outputs participating in the system combination. That is, if we combine four sys-
tems the number of systems, that is |E|, is four. A toy example is shown in Table
1. In this example, five MT output sequences “aaac”,“bbcd”,“bbbd”,“bbcf”, and
“ffbd” are given. Suppose that we calculate the 1-gram expectation of “bbcd”,
which constitute the negative quantity in Bayes risk. If we use all the given MT
outputs consisting of 5 systems, the expected matches sum to 2.1. If we discard
the system producing “ffbd” and only use 4 systems, the 1-gram expectation
improves to 2.20. As a conclusion, it is not always the best solution to use the
full set of given MT outputs, but removing some bad MT output can be a good
strategy. This suggests to consider all possible subsets of the full set of MT
outputs, as is shown in (7):

Ê = arg min
Ei⊆E

∑

E′∈Ei

L(E,E′)P (E|F ) (6)

= arg min
E′∈EHi

,EHi
⊆E

∑

E′∈EEi

L(E,E′)P (E|F ) (7)

where EHi
⊆ E indicates that we choose EHi

from all the possible subsets of E
(or a power set of E), EHi

denotes a i-th hypothesis space, and EEi
denotes a

i-th evidence space corresponding to EEi
. 2

Now we explain how to formulate an algorithm. As is explained in the latter
half of Section 2, a confusion network-based system combination approach takes
three steps 3 as follows.

1. Choosing a backbone by a MBR decoder from MT outputs S.
2. Measure the distance between the backbone and each output.
3. Run the decoding algorithm to choose the best path in the confusion network.

Let |S| = n. If we consider all the combinations of |S|, the simplest algorithm
which enumerates all the possibilities requires to repeat these three steps 2n − 1
times. However, if we observe this computation we can immediately recognize
that there are a considerable number of redundant operations. Hence, our ap-
proach is to reduce such redundant operations. First we observe what is changed
in these three steps by considering a combinatorial exploration.

– Due to the combinatorial exploration of MT outputs of |S| cases, all the
MT outputs can be selected as a backbone for some combination of S in
theory. However, if we exclude the combination of using only one or two MT
outputs, two cases remain important which have high chances to result in the
backbone in most of the cases: the output with the highest BLEU score and
that the MBR decoding selects the MT output with highest density (when
many MT outputs include the segment).

2 A power set of E = {1, 2} is {{1, 2}, {1}, {2}, ∅}.
3 In Section 2, we described the final step. However, this step is just to remove deletion
marks and is omitted here.



– Under the combinatorial exploration strategy, what we need to care about
is the unnormalized probabilities in the word posterior probabilities. Note
that the word posterior probabilities P (ej |F ) in Eq (5) will not vary even if
we take the scheme of combinatorial exploration.

– Other quantities, such as language model, word length penalty, and NULL
word length penalty will not be changed.

Following on from the second point above, we transform the parallel trees of
several MT outputs into a so-called clique tree [13], as is shown in Figure 2. In this
clique tree, each clique tree contains the corresponding word pairs in confusion
networks. By this transformation, we can reduce the message cost considerably
in the third step of decoding to choose the best path in the confusion network,
where a message is to connect a node and neighboring node.

Hence, the primitive version which computes all the combinations one by
one, takes O(|S| × n|T |) execution time in the third step where |T | denotes the
number of message passing events which is equivalent to the n times the length of
the clique tree. Compared to this, the version which uses a clique tree can reduce
this message costs from n|T | to |T |, hence the overall cost becomes O(|S|× |T |).
If we apply the max-product algorithm, the computation in the clique, which is
O(|S|), may be reduced further.

Message passing is done in the clique one by one propagating from the root
to the leaf. Let Ci and Cj be the neighboring clique in a clique tree. The value
of the message sent from Ci to Cj does not depend on the specific choice of
root clique. This argument applies in both directions (p.355 of [13]). Hence, the
message from Ci to another clique Cj , denoted as δi→j , can be written as (8):

δi→j = max
Ci−Si,j

φi

∏

k∈(Nbi−{j})

δk→i (8)

where φi denotes a factor in clique i, and Nbi denotes the set of indices of
cliques that are neighbors of Ci. This message passing process proceeds up the
tree. When the root clique has received all messages, it multiplies them with its
own initial potential.

4 Heuristic Algorithm

The second algorithm is intended to provide one of the baselines. Suppose we
are given 5 translation outputs (the top node marked with ‘11111’ in Fig. 1)
and we traverse from this node to the bottom node in a breadth first manner
where we only masure the BLEU score on trajectory nodes. Suppose also that
we know in advanced each single BLEU score of each translation output (‘00001’
to ‘10000’). The first task is to predict which children of ‘11111’ attains the best
BLEU score among its siblings (‘01111’ to ‘11110’). We choose the combination
(‘11011’) removing a worst single translation output (‘00100’) will attain the
best BLEU score. Then, we measure and compare the actual BLEU score of the
parent node and only this child node. (We do not measure the BLEU score of



system 1

system 3

system 2

Fig. 2. Figures show a max-product algorithm on multiple systems under two assump-
tions described in Introduction. In the figure, a circle denote a variable node, a square
denote a factor node, and a big rectangle denote a system (in the left figure) and a
clique (in the right figure).

Algorithm 1 Heuristic Algorithm

Given: A set of MT devset output S = {s1, . . . , sn} and MT testset output T =
{t1, . . . , tn}.
Step 1: Rank devset outputs S according to the performance measure (BLEU, TER,
etc) as S′ = {s′1, . . . , s

′

n} where s′i ≺ s′i+1 (the rank of s′i is higher than (or the same
as) s′i+1).
Step 2: i iteration: Discard the worst system i of S′ to make S′

(i).
Step 3: Measure the performance of S′

(i).
Step 4: If M(S′

(i)) > M(S′

(i−1)) then repeat Step 2.
Step 5: Reply the correspondent MT testset output T with regard to S′

(i).

other siblings). If there is an increase, we repeat this process until we reach the
bottom node. If we observe decrease, we judge that the parent node attains the
best BLEU score. This is shown in Algorithm 1. Although this starts from the
full set (of MT systems in a combination) to the empty set (We refer this as
Heuristic 1), it is also possible to take the reverse direction which starts from
the singleton set to the full set (We refer this as Heuristic 2). There have been
no quantitative predictions as far as we are aware.

5 Experiments

We used three different language pairs in our experiments. The first set is ES-
EN based on JRC-Acquis [26]; we use the translation outputs of 5 MT systems
provided by [7]. The second set is JP-EN provided by NTCIR-8 [8] where trans-
lation outputs are prepared by ourselves [20]. The third set is EN-FR provided
by WMT09 [3]. We use MERT [17] internally to tune the weights and language
modeling by SRILM [27].



NIST BLEU METEOR WER PER

system t1 (‘10000’) 6.3934 0.1968/0.1289∗ 0.5022487 62.3685 47.3074
system t2 (‘01000’) 6.3818 0.2337/0.1498∗ 0.5732194 64.7816 49.2348
system t3 (‘00100’) 4.5648 0.1262/0.0837∗ 0.4073446 77.6184 63.0546
system t4 (‘00010’) 6.2136 0.2230/0.1343∗ 0.5544878 64.9050 50.2139
system t5 (‘00001’) 6.7082 0.2315/0.1453∗ 0.5412563 60.6646 45.1949

baseline 6.3818 0.2337 0.5732194 64.7816 49.2348
heuristic 1 6.8419 0.2553 0.5683086 59.9591 44.5357
heuristic 2 6.3818 0.2337 0.5732194 64.7816 49.2348

our algorithm (‘11011’) 6.8419 0.2553 0.5683086 59.9591 44.5357

Table 2. Experiment between ES and EN for JRC-Acquis dataset. All the scores are on
testset except those marked ∗ (which are on devset). On comparison, we did sampling
of three combinations of the single systems, which shows that our results are equivalent
to the combination 2. These experimental results validate our motivating results: it is
often the case that some radically bad translation output may harm the final output by
system combination. In this case, system t3 whose BLEU score is 12.62 has a negative
effect on the results of system combination. The best performance was achieved by
removing this system, i.e. the combination of systems t1, t2, t4, and t5. The baseline
obtained the best score at ‘01000’, the heuristic algorithm obtained at ‘11011’, and our
algorithm obtained at ‘11011’.

Tables 2, 3, and 4 include first the BLEU score of individual systems, and
then show four results: baseline, heuristic 1 and 2 (Refer Section 4), and our
algorithm (Refer Section 3). The baseline is the BLEU score of the best single
system.

Table 2 shows our results from ES to EN. The improvement in BLEU was
2.16 points absolute and 9.2% relative compared to the performance of system
t2, the single best performing system (we optimized according to BLEU). Except
for METEOR, we achieved the best performance in NIST (0.14 points absolute
and 2.1% relative), WER (0.71 points absolute and 1.1% relative) and PER (0.64
points absolute and 1.3% relative) as well. However, in this case, Heuristic 1 also
achieved the same result. The heuristic algorithm 1 was processed from the point
‘11011’ (BLEU 0.2553) to ‘11001’ (0.2385). The result of heuristic algorithm 1
was 0.2553.

The left half of Table 3 shows our results from JP to EN. The improvement
in BLEU was 0.94 points absolute and 3.4% relative compared to the single
best performing system. Heuristic 2 and baseline shows the result of system
t2. The baseline obtained the result at ‘01000000000’, the heuristic algorithm
1 at ‘11001111101’, the heuristic algorithm 2 at ‘01000000000’, and our algo-
rithm at ‘11100010101’. The heuristic algorithm 1 was processed from the point
‘11011111111’ (BLEU 0.2202) to ‘11011111101’ (0.2750), ‘11001111101’ (0.2750),
and ‘11001110101’ (0.2345). The result of heuristic algorithm 1 was 0.2750. The
right half of Table 3 shows the results from EN to FR. The improvement in
BLEU was 0.30 points absolute and 1.3% relative compared to the single best
performing system. Heuristic 2 and baseline shows the result of system t8. Note



JP-EN NIST BLEU METEOR EN-FR NIST BLEU METEOR

system t1 7.0374 0.2532 0.6083487 system t1 5.6683 0.1652 0.5134530
system t2 7.2992 0.2775 0.6223682 system t2 6.3356 0.2235 0.5765081
system t3 5.1474 0.1243 0.4527874 system t3 5.2992 0.1402 0.4622777
system t4 6.6323 0.1913 0.5590906 system t4 6.0325 0.1945 0.5499950
system t5 6.6682 0.2165 0.5827379 system t5 6.3880 0.2217 0.5579302
system t6 6.8597 0.2428 0.5909936 system t6 5.6773 0.1664 0.5152482
system t7 7.2555 0.2755 0.6193990 system t7 6.2267 0.2170 0.5575926
system t8 6.1250 0.1946 0.6090198 system t8 6.4064 0.2262 0.5614477
system t9 7.2182 0.2529 0.6062563 system t9 6.2788 0.2148 0.5525901
system t10 5.6288 0.1727 0.5141809 system t10 6.0535 0.2034 0.5516885
system t11 7.2625 0.2529 0.6105696 system t11 5.5635 0.1624 0.5137018

system t12 6.3131 0.2201 0.5574140
system t13 6.1832 0.2112 0.5514069
system t14 6.1462 0.2055 0.5582915
system t15 6.2394 0.2059 0.5303054
system t16 6.2529 0.2161 0.5567934

baseline 7.2992 0.2775 0.6223682 baseline 6.4064 0.2262 0.5614477
heuristic 1 7.4292 0.2750 0.6228906 heuristic 1 5.5584 0.1799 0.5820681
heuristic 2 7.2992 0.2775 0.6223682 heuristic 2 6.4064 0.2262 0.5614477

our algorithm 7.5161 0.2869 0.6305818 our algorithm 6.5033 0.2292 0.5792332

Table 3. (Left half) Experiment between JP and EN for NTCIR dataset. The baseline
obtained the result at ‘01000000000’, heuristic algorithm 1 was at ‘11001111101’, heuris-
tic algorithm 2 was at ‘01000000000’, and our algorithm obtained at ‘11100010101’.
In this combination, system t3 of BLEU score 0.1243 is included which can be ex-
plained that . (Right half) Experiment between EN and FR for WMT 2009 devset.
The baseline and the heuristic 2 were at ‘0000000100000000’ and the heuristic 1 was
at ‘0100101110011011’.

that the number of items in the power set (corresponding to the set of all possible
sets of MT systems participating in the combination) in ES-EN was 31, JP-EN
was 4094, and EN-FR was 65534.

6 Conclusion and Further Studies

This paper investigates the enlarged hypothesis space in MBR decoding in SMT,
employing MAP inference on clique tree. This mechanism can substitute the cal-
ibration of probabilities with the mechanism of max-product algorithm. First of
all, MBR decoding has not been much investigated compared to MAP decoding
in SMT, but is rather regarded as a practical tool which achieves state-of-the-art
performance for evaluation campaigns. Traditionally, the full set of MT outputs
or only to some MT outputs as selected by human beings are employed for MBR
decoding. There has been no paper yet to describe the optimization process of
this as far as we know (Hence, the search space for the best combination shown
in Figure 2 is rarely seen.) Secondly, our algorithm can be successfully applied



Fig. 3. The left figure shows the count of exact matches among the translation out-
puts of Moses as a 100-best list after stop-word removal and sorting; We project each
sentence in a 100-best list onto a vector space model and count the number of points.
The middle figure shows the same quantity for a 1000-best list. The right figure shows
the same quantity for a 7-multiple reference (human translation). We use the parallel
data of IWSLT 07 JP-EN where we use devset5 (500 sentence pairs) as a development
set and devset4 (489 sentence pairs) as a test set; 7-multiple references consist of de-
vset4 and devset5 (989 sentence pairs). For example, the left figure shows that 7% of
sentences produce only one really useful translation in a 100-best list and the other 99
sentences in the 100-best list are just reordered versions. In contrast, the right figure
of human translation shows that more than 70% of sentences in 7 multiple references
are meaningfully different.

to the case where the number of participating systems is more than 10, which
is the case for the second and the third experiments. Between ES-EN, the im-
provement was 2.16 BLEU points absolute and 9.2% relative compared to the
best single system. Between JP-EN, the improvement was 0.94 points absolute
and 3.4% relative. Between FR-EN, the improvement was 0.30 points absolute
and 1.3% relative.

There are several avenues for further study. Firstly, to date our experiments
involved at most 16 systems. We would like to enlarge the size of the input such
as the 1000-best list as in Tromble et al. [28] and DeNero et al. [4], and a general
MT translation setting as in Arun et al. [1]. Their improvements are in general
quite small compared to the confusion network-based approach. As is shown in
Figure 3, the 100-best list and the 1000-best list produced by Moses [11] tend
not to be sufficiently different and do not produce useful translation alternatives.
As a result, their BLEU score tends to be low compared to the (nearly best)
single systems. This means that in our strategy those MT inputs may be better
removed rather than employed as a useful source in system combination.

Yet another avenue for further study is to provide prior knowledge into the
system combination module. In [19, 18, 21], we showed that word alignment may
include successfuly prior knowledge about alignment links. It would be interest-
ing to incorporate some prior knowledge about system combination, for example,
(in)correct words or phrases in some particular translation output.
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